平成28年度指定

スーパーサイエンスハイスクール

 研究開発実施報告書

 研究開発実施報告書}

第5年次

令和 3 年 3 月
石川県立小松高等学校

（1）令和2年度スーパーサイエンスハイスクール研究開発実施報告（要約）

（2）令和2年度スーパーサイエンスハイスクール研究開発の成果と課題7
（3）実施報告書（本文）
○指定第3期目SSHの5年間を通じた取組の概要 15
（1）研究開発の課題 21
（2）研究開発の経緯 23
（3）研究開発の内容
（1）課題研究を中心に据えた全校での 3 年間の学習体系の研究開発
1．学校設定科目 24
1．1．「総合科学」および「課題探究I」
1．2．「探究基礎」1．3．「プレゼンテーション\＆ディスカッション」1．4．「課題探究 II」
1．5．「課題探究」
1．6．「人文科学課題研究 I 」
1．7．「人文科学課題研究 II」
1．8．「科学探究」
2．課題研究を充実させるためのフイールドワーク，連携，国際共同研究等 38
2．1．野外実習2．2．関東サイエンスツアー2．3．大学実験セミナー及び英語発表2． 4 ．韓国との共同研究•合同合宿2．5．韓国での科学研修と科学交流•研究発表3．必要となる教育課程の特例等44
（2）第3学年における科目融合•領域融合型の探究学習の研究開発 1．「課題探究III」 46
2．「通常科目」における領域融合の取組 49
3．「探究基礎」における領域融合の取組 49
（3）生徒の自己評価能力を育成し，
生徒自身が探究活動に生かせる評価方法の研究開発
1．学校設定科目「探究基礎」のディベート学習における取組 50
2．学校設定科目「プレゼンテーション\＆ディスカッション」 （英語発表）における取組 52
3．学校設定科目「課題探究 II」中間報告会
（こまつ研究サポートプログラム）における取組 53
（4）実施の効果とその評価 54
（5）S S H中間評価において指摘を受けた事項のこれまでの改善•対応状況 58
（6）校内におけるS S H の組織的推進体制 59
（7）成果の発信•普及 60
（8）研究開発実施上の課題及び今後の研究開発の方向性 61
資料1 令和 2 年度 教育課程表 65
資料2 学校設定科目評価表，事業評価表 66
学校設定科目評価表
学校設定科目「総合科学」「課題探究I」 学校設定科目「プレゼンテーション\＆ディスカッション」
学校設定科目「課題探究II」
学校設定科目「課題探究」
事業評価表
野外実習（生物）
サイエンスツアー
資料3 石川県 S S H 運営指導委員会の記録 72
資料4 各種発表会•学会・コンテストへの参加 74
資料5 教員の学会等発表 76
資料 6 卒業生追跡調査 77
資料 7 開発教材一覧 79
資料8 本文中に掲載したルーブリック・検査用紙一覧（掲載したもののみ） 79
資料9 教材ワークシート集 80
資料1 0 研究テーマ一覧 87「課題探究 II 」「課題探究」（理系）（文系）「人文科学課題研究 I 」
S S Hだより91

（1）令和2年度スーパーサイエンスハイスクール研究開発実施報告（要約）

（1）研究開発課題

正答のない問題を主体的•協働的に解決することができる探究力を持った人材の育成

（2）研究開発の概要

（1）課題研究を中心に据えた全校での3年間の学習体系の研究開発

- 第 1 学年における探究型の学校設定科目と基礎課題研究（「課題探究 I 」「探究基礎」）
- 全校における課題研究（「課題探究II」「人文科学課題研究I」「課題探究」）
- 英語による発表•討論のための学校設定科目の設置（「プレゼンデーション\＆ディイカッシション」）
- 課題研究における大学•企業の連携拡大及びシステム化（こまつ研究サポートプログラム）
- 課題発見から課題探究に至るプロセスの共有によるアクティブ・ラーニングの推進
（2）第3学年における科目融合•領域融合型の探究学習の研究開発
－学校設定科目「課題探究III」（理数科）「科学探究」（普通科）及び「人文科学課題研究II」（普通科人文科学コース）における領域融合型の学習と教材開発
- 複合的，現実的な問題への取組による「探究力」の育成
- 実社会における現実的な問題に取り組むための地域企業との連携
- 「工学リテラシーとしての数学」等，大学での学びにつなげていくための研究開発
（3）生徒の自己評価能力を育成し，生徒自身が探究活動に生かせる評価方法の研究開発
- 個々の活動，学校設定科目におけるパフォーマンス評価の充実
- 生徒の自己評価能力を育成するための生徒参加型ルーブリックの作成
- 生徒の「探究力」を測定し，伸長度を数値化•検証するための客観検査の開発

（3）令和 2 年度実施規模

学科・コース		1 年生		2 年生		3 年生		計	
		生徒数	学級数	生徒数	学級数	生徒数	学級数	生徒数	学級数
	理数科	41	1	38	1	38	1	117	3
普	人文科学コース	280	7	42	1	40	1	828	21
通	文系			92	6	81	2		
科	理系			145		148	4		

理数科（1119名）および普通科（853名）の全校生徒を研究対象とする。

（4）研究開発内容

O研究計画

第 1 年次

－第1学年の学校設定科目「課題探究 I 」「総合科学」（理数科）「探究基礎」（普通科）及び「プレゼンテーション\＆ディスカッション」（学年全体）を開設し，探究スキル育成のための基礎学習及び基礎課題研究を行った。
第1年次 ・すべての学校設定科目，探究活動においてパフォーマンス評価を確立した。ま た，「生徒参加型ルーブリック」を提唱しその成果を検証した。
上記の取組から， 3 年間の全校での課題研究の取組のためには，第 1 学年での探究スキルの育成及び評価方法の共有の重要性が確認された。

第 2 年次	－第 2 学年の学校設定科目「課題探究 II」（理数科），「課題探究」「人文科学課題研究I」（普通科）を開設した。 －第2学年での課題研究における企業，大学との連携を推進するため「こまつ研究サポートプログラム」を立ち上げ，年間を通して報告会を行った。 －第 2 学年を中心としたすべての学校設定科目及び探究活動におけるパフォーマ ンス評価を確立した。また，「生徒参加型ルーブリック」により，ルーブリック の充実を図ると共に，生徒の自己評価能力を育成した。 上記の取組から，課題研究における企業，大学との連携によって課題研究の質の向上が確認された。また，「生徒参加型ルーブリック」の取組が生徒の自己評価能力の育成に資することが証明された。
第3年次	－第 3 学年の学校設定科目「課題探究III」（理数科）「科学探究」「人文科学課題研究II」（普通科）を開設し，領域融合学習を行った。 －3年間にわたるすべての学校設定科目及び探究活動におけるパフォーマンス評価を確立した。 －「探究力」を測る客観検査を模索し，専門家の指導により，E I（Emotional Intelligence）の概念を用いた「探究力」の測定方法を開発•実施した。
第4年次	－3学年にわたる学校設定科目の継続性を確保し，通常の授業も含めたすべての授業において探究力を育成できているかを検証した。 －地域の高等学校との連携を深め，本校の実践が他校でも実践できているかを検証した。また，パフォーマンス評価及び「探究力」を測る客観検査の対象を地域の高等学校へと広げ，検査結果を分析すると共に，検査の汎用性を検証した。 （この点に関しては，文部科学省中間評価の助言により，E I の概念を用いた評価を地域の高等学校においても実施し，探究活動普及の成果を検証した。）
第 5 年次 （本年度）	－継続的探究活動（課題研究）及び通常授業の「探究力」育成の取組が，生徒の批判的思考力の育成に役立っているかを検証する。 －第3学年における領域融合•文理融合等の授業及び大学との連携が，実社会に おける現実的な問題に取り組む「探究力」を育成していることを実証する。 －パフォーマンス評価の充実が生徒の学習の目標を明確化させ，生徒の自己評価能力の青成及び教員による継続的な指導のために有効であることを実証する。

○教育課程上の特例等特記すべき事項

＜削減する教科•科目と代替措置＞
課題研究•探究学習の時間を確保するための学校設定科目を開設し，以下の科目を代替する。

学科	開設する科目名	単位数	代替科目名	単位数	対象
理数科	プレゼソテーショシ\＆デイスカッション	1	社会と情報	2	第1学年
	総合科学	2	社会と情報	2	第1学年
			保健	1	
			家庭基礎	1	
			絵合的な学習（探究）の時間	3	
	課題探究 I課題探究 II課題探究III	1	社会と情報	2	
		2	課題研究	1	
		1	絵合的な学習（探究）の時間	3	
普通科 普通コース 理系•文系	プレゼソテーショヨ\＆デイスカッション	1	社会と情報	1	第1学年
	探究基礎	1	社会と情報	1	第1学年
			絵合的な学習（探究）の時間	1	
	課題探究	1			
（人文科学 コース)	科学探究 （人文科学課題研究 I） （人文科学課題研究 II）	$\begin{gathered} 1 \\ (2) \\ (1) \end{gathered}$	給合的な学習（探究）の時間	2	第2学年第3学年

○令和 2 年度の教育課程の内容

（1）課題研究及び探究活動に関する教科•科目
＜第1学年＞
学校設定科目「総合科学」「課題探究 I 」（理数科）
「保健」「家庭」等を含めた教科横断的な学習を通して科学的な見方を身に付けた後，テーマ設定を行い，テーマ報告会や指導教員によるカウンセリングを経て，課題研究を開始する。
「探究基礎」（普通科）
ディベート（本年度は紙上ディベート）を通して証拠により論証する訓練を行い，論理的思考力 を養うとともに，基礎課題研究を行い，課題発見能力と探究スキルを育成する。
「プレゼンテーション\＆ディスカッション」（全科共通）
情報の取り扱い，情報モラル等の学習を行うとともに，科学に関する英語の文章を読み，英語に よる発表を行い，質疑応答，さらには内容に関して英語で討議する能力を育成する。
＜第2学年＞
「課題探究II」（理数科）
「課題研究 I 」で開始した研究を継続し，必要に応じて大学教員の指導を受け，研究内容を深め る。また，県の発表会や校内発表会，校内英語発表会，各種学会高校生部門及び海外交流における発表会（DSHS International Science and Culture Fair）（今年度は Web で交流）の準備を行う。
「課題探究」「人文科学課題研究 I 」（普通科）
「探究基礎」で育成された課題発見能力，探究スキルを用いて課題を設定し，課題研究を行う。 ＜第3学年＞
「課題探究III」（理数科），「科学探究」「人文科学課題研究II」（普通科）
第2学年での課題研究を継続し，個人によるまとめを行うとともに，領域融合，科目融合学習を行う。
（2）課題研究とその他教科•科目との連携の例
ア「探究基礎」（普通科）と「化学基礎」（普通科）との連携
普通科1年生全員が履修する「化学基礎」で基礎学習を行い，さらに理系進学希望者に対して「探究基礎」において，化学分野の実験手法とデータ分析方法を学習させ，探究スキルを育成する。
イ「英語表現 I 」と「プレゼンテーシヨン\＆ディスカッション」及び「課題探究II」（理数科）等との連携
1年次の「プレゼンテーション\＆デイスカッション」の指導を「英語表現 I 」の授業と連携して行い，「課題探究II」及び「人文科学課題研究 I 」における国内•国外での英語発表の基礎とする。

○具体的な研究事項•活動内容
（1）課題研究を中心に据えた全校での 3 年間の学習体系の研究開発
ア 第1学年における学校設定科目の研究開発

- 「探究基礎」におけるディベート学習，基礎課題研究および探究スキル育成講座の実施
- 「総合科学」における教科横断学習及び物理•化学の実験を通した探究スキルの育成
- 「課題探究 I 」における探究学習への取組と課題研究のテーマ設定
- 「プレゼンテーション\＆ディスカッション」における情報の知識に基づいた資料の収集，解析 と，英語によるグループ発表を通した取組
イ 第2学年における学校設定科目の研究開発
- 「課題探究II」における理数科生徒による課題研究の充実
- 「課題研究II」における国内•国外での英語発表の実践
- 「課題探究」における普通科生徒（理系•文系）による課題研究の取組
- 「人文科学課題研究 I 」での普通科人文科学コースの生徒による課題研究の取組

ウ 第3学年における学校設定科目の研究開発
－「課題探究III」（理数科）「科学探究」（普通科文系•理系）「人文科学課題研究II」（普通科人文科学コース）における，科目融合•領域融合型の学習の取組
エ 課題研究における大学•企業との連携拡大及びシステム化（こまつ研究サポートプログラム）

- 「こまつ研究サポートプログラム」による企業•大学との連携
- 課題探究における大学教員を招いてのグループ別報告会の実施（年 4 回程度）
- 大学教員による教員研修会の実施（年 2 回程度）

オ 探究活動を充実させるための課外活動・フィールドワークの実施•研究開発
－「野外実習」「サイエンスツアー」「大学実験セミナー」「国際科学交流」の実施
力 課題発見から課題探究に至るプロセスの共有による通常授業改善の推進

- 本校教員の研究指導力向上のための研修会の実施
- 「主体的•対話的で深い学び」につながる授業改善の取組•検証
- 通常授業において生徒の主体的な学びを促す「課題発見型授業」の研究開発

（2）第3学年における科目融合•領域融合型の探究学習の研究開発

ア 学校設定科目「課題探究III」「科学探究」「人文科学課題研究II」（第3学年）の研究開発 －「課題探究III」における科目融合•領域融合型の探究活動の取組（数学と物理の融合学習，生物と化学の融合学習）

- 「科学探究」（普通科理系•文系）における領域融合型の探究活動の取組
- 「人文科学課題研究II」での普通科人文科学コースの生徒による領域融合型の探究活動の取組
イ 学校設定科目「探究基礎」（第1学年）のディベート学習における領域融合テーマへの取組
－動物園の是非，原子力発電廃止の是非，遺伝子組み換え食品の是非および電気自動車への
切り替えの是非を論題とするディベート学習への取組（本年度は紙上ディベートを実施）

（3）生徒の自己評価能力を育成し，生徒自身が探究活動に生かせる評価方法の研究開発

ア 個々の活動，学校設定科目におけるパフォーマンス評価の充実
－学校設定科目におけるルーブリックを用いたパフォーマンス評価の実施
イ 生徒の自己評価能力を育成するための生徒参加型ルーブリックの作成
－生徒参加型ルーブリックの作成•実施・アンケート調査による検証

（5）研究開発の成果と課題

○研究成果の普及について

（1）地域の高等学校との連携による課題研究の普及•推進
－地域の高等学校で，新たに課題研究を実施する学校との連携を行ってきた。年間を通しての学校訪問や授業見学を受け入れ，本校の課題研究の手法を普及した。

- 本校のルーブリックを活用し評価方法の共有を図った。
- 地域の連携校を本校の生徒課題研究発表会に招聘し，合同発表会を実施した。
（2）地域の高等学校との連携によるパフォーマンス評価及び探究力検査の汎用性の検証
－パフォーマンス評価及び「探究力」を測る客観検査を地域の高等学校でも使用してもらい， その汎用性を検証した。
（3）その他（学校訪問の受け入れ・学会等での教員の発表•近隣の小中学校への発信）
－中間評価の結果を受け，学校訪問が急増した。特に，普通科（文系•理系）の課題研究に対 する関心が高く，教材や資料を提供した。
- 本校 S S H 研究発表会•公開授業，および日本創造学会等において，教員が発表を行った。
- 「サイエンスヒルズこまつ」と連携し，本校生徒が小•中学生に対して実験教室を行った。

○実施による成果とその評価

課題研究を中心に据えた3年間の学習体系を確立し，各学校設定科目を「学校設定科目評価表」で， フィールドワーク，連携等の諸活動を「事業評価表」で評価した。また，本校が独自に開発したEIの概念を用 いた「探究力検査」，Can－do形式の「科学的探究力」伸長度の調査及び各種の探究力客観テストによ つて，その学習体系が生徒の「探究力」の育成に役立つことが明らかになった。

（1）課題研究を中心に据えた全校での 3 年間の学習体系の研究開発

－学校設定科目「総合科学」によって，様々な分野に対して科学的な見方を身につけることができ た。また，実験を中心とした探究的学習を通して，探究スキルを身につけることができた。
－学校設定科目「課題探究 I 」における「ものづくり学習」において，実社会における現実的な問題に取り組み，課題研究の自主的なテーマ設定につながる取り組みができた。
－学校設定科目「探究基礎」において，証拠による論証を行う習慣が身についた。また，基礎課題研究および探究スキル育成講座への取り組みにより，主体的な学習態度の育成および探究学習に必要な実験技術•探究スキルの習得につなげることができた。
－学校設定科目「プレゼンテーション\＆ディスカッション」において生徒は，情報の取り扱いにつ いて学ぶとともに，英語で情報を収集し，英語で発表する活動を通して発表能力を高めた。
－学校設定科目「課題探究 II」「課題探究」等において課題研究に取り組み，全校での課題研究実施の体制が整った。
－「こまつ研究サポートプログラム」を運用し，課題研究において大学，企業からの有益な指導助言を効率よく受けることで，生徒の意欲を高め，研究活動の充実につなげることができた。
－教員の研究指導力向上のための研修会は，課題研究の指導力向上や，主体的•対話的で深い学び につながる授業づくりにつながった。
（2）第3学年における科目融合•領域融合型の探究学習の研究開発
－学校設定科目「科学探究」「課題探究III」における領域融合学習において，生徒は微分方程式等 の大学レベルの数学を学習し，それらを活用した数式モデルの作成や課題解決をすることで，発展的な学習に対する意欲や自然科学に対する興味関心を高めた。

（3）生徒の自己評価能力を育成し，生徒自身が探究活動に生かせる評価方法の研究開発

－パフォーマンス評価を充実させ，評価の観点を明確にし，生徒の意欲的な取り組みにつなげるこ とができた。「学校設定科目評価表」及びアンケートによりその成果を検証した。
－「探究基礎」をはじめとする探究活動を中心とした学校設定科目において，評価の際のアンケー ト調査の結果を利用した，生徒参加型ノーブリックの作成を行うことができた。
－専門家の意見を参考に本校が独自に開発したE I（Emotional Intelligence）の概念を用いた探究力検査により，生徒の「探究力」を数値化することができた。

○実施上の課題と今後の取組

（1）課題研究を中心に据えた全校での3年間の学習体系の研究開発 ○学校設定科目（一般科目との関係性とその問題点）
1．「総合科学」および「課題探究 I 」（理数科•1年）
本校の研究開発課題である「正答のない問題」（課題研究）に取り組み，大学での学びにつなげ るには，現状の1年次の学習（「理数生物」「理数数学 I 」「理数数学特論」及び学校設定科目「総合科学」）は課題研究に向けての基礎学習としては不十分である。充実を図りたい。

2．「探究基礎」（普通科 • 1 年）

基礎課題研究では，生徒の興味を喚起し，2年次の課題研究につなげるために，専門教科の教員 が指導している。そのため，生徒の希望が偏ると，教員ごとに担当する生徒の数が変動し，きめ細 やかな指導が困難になることが大きな課題として残った。

3．「プレゼンテーション \＆ディスカッション」（全科 • 1 年）
情報の取扱いや情報モラル等の「社会と情報」の学習内容と並行して英語の討論能力を育成する ためには，さらなる時間の確保が必要となる。今後は「英語表現I」との連携を深め，生徒の英語 コミュニケーション能力を育成のための取組を進めていかなくてはならない。

4．「課題探究」（普通科 • 2 年）

「課題探究II」で実施している「こまつ研究サポートプログラム」による指導を受ける機会が必要である。

5．「人文科学課題探究 I 」（人文科学コース・2年）

文献調査を行った後，研究班のメンバーによる多面的な見方からの議論がなされた結果，一定の結論が導かれるが，その結論の正当性を客観的に評価する点に問題が残った。

○課題研究を充実させるためのフィールドワーク，連携及び国際共同研究

すべてのフィールドワーク，企業•大学等との連携，国際共同研究が課題研究のためにあるとい う視点を，他の外部協力者とさらに共有していかなくてはならない。

（2）第3学年における科目融合－領域融合型の探究学習の研究開発

生徒は科目融合•領域融合型の学習に対して意欲的に授業に取り組み，自然科学に対する視野を広げる事ができたものの，それをその後の探究活動へ十分につなげられなかったという実感をもつ ていることが伺われる。より効果的な授業にするためには，実験の原理や操作およびデータの処理，実験結果に対する解釈などについて考える時間を十分確保することが必要となる。

（3）生徒の自己評価能力を育成し，生徒自身が探究活動に生かせる評価方法の研究開発

1．ルーブリックによるパフォーマンス評価の充実と生徒参加型ル—ブリックの取組
ルーブリックを使用した自己評価の体制，ルーブリックの各項目の達成を目標に準備を進める体制を整えることができたが，「生徒参加型ルーブリック」の取組が十分とは言えない。今後は生徒 の自己評価と他者の評価を比較し，それを言語化する取組を進めていかなくてはならない。

2．「探究力」の伸長度を測定するための客観的検査（EI検査）

専門家の指導を受けながら開発してきた E I の概念を用いた「探究力」を測定する検査や，その他の調查，業者テスト等のデータにより，生徒の「探究力」の伸長度が証明された。しかし，この E I 検査は単独で「探究力」の伸長を裏付けるには不十分である。今後はEI精度を高めると共 に，ポートフォリオや探究力調査，客観テスト等，質の異なるデータを組み合わせて研究の評価を行っていかなければならない。（カリキュラム評価のトライアンギュレーションの確立）

（6）新型コロナウイルス感染拡大の影響

新型コロナウイルス感染拡大のため，4月，5月が休校となり，課題研究をはじめとする探究型の授業の開始が遅れた。ディベート等の生徒の密集が避けられない内容は代替措置を行う一方，課題研究は例年より多少の遅れがあったものの，夏季休業等を利用しほぼ例年の内容で進めることができた。また， フィールドワークやセミナー，科学交流等は以下の変更があった。

- 「生物野外実習」は宿泊の予定を日帰りに変更し，資料収集，ウニの発生実験，観察を行った。
- 8月に石川県立大学で行っている「大学実験セミナー」は例年参加してくれている韓国大田科学高校の来日が延期となったため，ひとまず 1 月に延期した。しかし，最終的に来日は中止となり，ま た感染拡大が収まらず，大学での開催を断念し，本校で大学教員を招いての開催となった。
－9月に予定していた「関東サイエンスツアー」は例年受け入れていただいている東京方面の大学及 び研究所の受け入れが決まらなかった。代わりに県内の大学にお願いして，12月に「県内サイエ ンスツアー」を日帰りで実施した。
－海外科学交流と共同研究及び発表会は韓国大田科学高校の来日と本校生徒の訪韓いずれも不可能と なった。代わりに Web による交流を複数回行い，発表会，意見交換を行った。

（2）令和2年度スーパーサイエンスハイスクール研究開発の成果と課題

（1）研究開発の成果

本校のS S Hの目標は，「正答のない問題を主体的•協働的に解決することができる探究力を持っ た人材の育成」であり，本校生徒が課題研究において「正答のない問題」に取り組み，3年間の学習体系を通して，彼らの探究心を満足させうる高度な課題研究を体験し，大学での学びにつなげること にある。

指定第3期目の研究開発最終年度にあたる本年度までに，第1学年における探究スキル育成と自主的なテーマ設定，第2学年における課題研究の充実，第3学年における研究継続と領域融合学習の3年間の学習体系が確立し，それによる生徒の探究力の伸長度も証明された。また，生徒自身が探究活動に生かせる評価方法の研究開発として，ルーブリックの更新，改良によるパフォーマンス評価の充実に取り組むとともに，生徒の自己評価能力育成のための取組として「生徒参加型ルーブリック」を提唱してきた。

これらの取組を含めて，学校設定科目の評価と改善，課題研究の深化，大学や企業との連携拡大（こ まつ研究サポートプログラム），効果的な評価方法の研究，S S H 行事や科学系部活動の活性化など に継続的に取り組んでいる。ここでは，アンケート調査を含めた学校設定科目評価表，事業評価表，開発した客観検査，業者テスト，パフォーマンス課題によるポートフォリオから本校の研究開発につ いての成果を総括する。

（1）課題研究を中心に据えた全校での 3 年間の学習体系の研究開発

目標 すべての授業において「探究力」の土台となる思考力，主体的•協働的に学ぶカを育成し，課題研究を中心に据えた全校での3年間の学習体系を確立する。

1．学校設定科目の取組とその成果•検証

1． 1 「総合科学」（理数科第 1 学年•2単位）及び「課題探究 I」（理数科第 1 学年•1単位）
「総合科学」では，地歴•公民科，数学科，理科，保健体育科，家庭科の教員が，それぞれ の教科の内容について科学的な観点を重視した授業を展開した。地歴•公民科は科学者の倫理観について，数学科は統計処理等，課題研究のための基礎的な学習を行う一方，保健体育科や家庭科はそれぞれの教科の持つ科学的な側面を生徒の協働的な学びを通して探究的に掘り下 げる授業が行われた。これらの授業については，今後の各教科の授業改善に生かされている道筋が出来上がったといえる。また，理科領域では物理分野や化学分野について実験を中心に学習し，データ処理や分析，得られた結果に対する考察などを経験することを通して，興味•関心を高めるとともに，主体性を引き出すことがで きた。「課題探究II」では，物理，化学，生物の各分野に関するそれぞれ 6 時間の探究活動に取 り組み，科学的手法を用いた課題解決を体験する ことにより，探究スキルを身につけた。続いて，次年度の課題研究のテーマ設定を行い，課題研究 を開始した。（p． 66 学校設定科目評価表参照）

いずれの科目も，学校設定科目評価表の評価
 をもとに年度ごとに改良を加え，生徒は探究スキルの重要性を感じている。（上図）

今年度は新しい取組として「工学的なものづくり学習」の講座を開設した。物理，化学の視点から将来ものつくりに役立つ課題に向けて，生徒が試行錯誤を繰り返し P D C A サイクルを回しながら解決する方法を学んだ。

1．2「探究基礎」（普通科第1学年•1単位）

前半はディベート学習における，証拠による論証を行う活動を通して，論理的思考力を育成 した。今年度はコロナウイルス感染拡大防止のため，ディベート学習に代えて「ディベート小論文（紙上ディベート）」を実施した。ディベートのテーマに関して，論拠を示しながら是•非に分かれて小論文を書き，互いの小論文に対して反論を記入する。これを複数回繰り返しな がら論を深めていく手法である。例年のような形式でのディベートは行えなかったが，所期の目的である証拠による論証の習慣づけと論理的思考力の育成には，十分成果があったものと思 われる。

後半は例年通り文系進学希望者と理系進学志望者に分かれて探究活動を行った。文系進学志望者には基礎課題研究として，国語，英語，地歴公民，音楽，体育，家庭の各分野に関するテ ーマについて課題研究に取り組ませ，主体的に考える態度や探究スキルを育成した。また，理系進学希望者には，探究スキル育成講座として化学分野の基礎的な実験に取り組ませ，探究の過程における「仮説の設定」「検証計画の立案」「観察•実験の実施」「結果の処理」「考察•推論」を経験することで，探究活動に必要な実験や観察の技能を身につけることができた。年度末に実施したポスター発表会では，活発な質疑応答が見られた。

1． 3 「プレゼンテーション \＆ディスカッション」（第1学年•1単位）

「英語表現I」と連動し，例年 4 回の発表会を行っているが，今年度は情報教室の使用が制限されたことにより情報分野の学習に遅れが生じたことから，発表の回数を 3 回とした。「英語による情報収集」「プレゼンテーションファイルの作成」「発表の準備•練習」「発表•質疑応答」の流れを通じて表現力を高めた。1回目の発表では科学的事象に関するもの，2回目 の発表では科学に関する記事を集めたものの，それぞれ 20 種類の英文テキストを準備し，科学英語の指導の充実を図った。また，「国内や海外での英語の発表において英語で討論する能力が育成されていない」ことが 2 期目の課題となっていたので，この科目において生徒が発表の後にテーマに関して討論をする機会を増やすことで，ディスカッションの質•量を充実させた。その結果，生徒アン ケートにおいて 82% の生徒が「英語で討論 する能力が身についた」，88\％の生徒が「発表の準備や練習は十分にできた」と回答し

た。（p． 67 学校設定科目評価表参照）

1． 4 「課題探究 II」（理数科第 2 学年•2単位）と「こまつ研究サポートプログラム」

第1学年の「課題探究 I 」におけるテーマ設定を受けて，課題解決のための調査•実験•考察を行い「科学的探究力」を育成した。また，その研究結果を，日本語及び英語で発表する機会を設け，「表現力」を育成した。

研究開発第1年次から取り組んでいる 1 人 1 冊ノートの取組であるが，本年度も生徒は各自 の研究ノートに記録を残しながら研究活動を進め，1人1本の研究論文を作成した。担当教員 は定期的に研究ノートを集めて点検したが，今年度はコロナウイルス感染拡大の影響で 2 か月間休校があり，生徒たちは，少ない時間で結果を出さなければならないという意識からか，結

果をこまめにメモするように心がけており，例年よりもノートの記述が多かった。
学校設定科目評価表の値を見ると，今年度 はすべての生徒が肯定的な回答をしており， 4 段階で最高評価（（1）肯定）と回答した生徒 の割合は，「課題に応じてうまく探究するこ とができた」の項目で昨年度から 23 ポイント，「自然の事物•現象に対する科学的探究力が増した」の項目では昨年度から31ポイントそ れぞれ増加した。これは，1年次の「課題探究 I 」で，テーマ設定のための時間を十分に確保したことや，大学の先生による課題研究 の進め方についての講義を受けたことの成果 と考えられる。（p． 68 学校設定科目評価表参照）

「こまつ研究サポートプログラム」による年3回の中間報告会（こまつ研究サポートプ ログラム）も年度を重ねるごとに充実してき ている。少人数による報告会と外部専門家に よる助言や，議論の時間を十分に取り，また

（令和2年度）課題に応じてうまく探究することが できたと思いますか？
 さらに専門的な指導者の推薦•紹介につながったことは，生徒の研究の質を高める上で有効で あつた。

課題研究を行う前後の生徒の「探究力」の伸長度については，研究開発第2期目から行って いる，Can－do 形式の探究力調査，専門家の意見を聞きながら本校が開発を進めているE I 検査，客観テスト等のいずれの指標においても伸長が観察され，研究の目的は達成されたといえ る。（p．54－56 実施の効果とその評価参照）

1．5「課題探究」（普通科普通コース第2学年•1単位）
普通科普通コース理系では4月～7月に数学活用学習及び物理•生物実験講座を実施し，基礎知識や実験技能を習得し，9月にテーマ を設定して12月まで課題研究を行った。3期目5年間で，ほぼすべての教員が課題研究 の指導を経験し，先を見通した指導ができる教員が増えるとともに，「探究力」「表現力」 の伸長を自覚する生徒が増加した。（p． 69 学校

設定科目評価表参照）

普通科普通コース文系では生徒 91 名を，担当教員 7 名（外国語科 2 名，国語科 2 名，地歴公民科2名，保健体育教員1名）で指導した。 4 月から研究活動を行い，「テーマ発表会」「中間発表会」でなどの発表会において，担当教員以外の複数の教員からも指導•助言を受けるこ とで，研究の軌道修正を行った。また，普通科普通コース文系においても，課題研究を経験し た教員が増えるにしたがって教員の指導力も向上し，十分な水準の指導を行うことができた。

1． 6 「人文科学課題研究 I 」（普通科人文科学コース第 2 学年•2単位）

S S Hで取り組んできた探究活動の手法を取り入れ，国語，地歴，公民，外国語の 4 教科に ついて 8 テーマの課題研究を行った。 1 学期に十分な時間をかけてテーマ設定，先行研究調べ を行い，文献読解やデータ収集等，それぞれの領域の研究手法に従って研究を開始した。夏季

休業中に中間発表会を行い，大学教員等の専門家から指導を受け，研究の軌道修正を行った。 2 学期の間に，指導教員以外の教員の指導も受けながら研究を深め，学期末にプレ発表会を行 い，他校の先生方の意見も入れながら，研究の最終的な検討を行った。理数科の様に年間を通 しての外部指導者の指導を定期的に受けることは難しいが，校内の教員の指導力を活用して，生徒の探究力育成を図っている。

2 期目から研究開発を進めている「人文科学課題研究I」の教材と指導方法，評価方法を普通科普通コース文系の課題研究の研究開発につなげるとともに，他校への普及を行った。

1．7．「科学探究」（普通科普通コース第3学年•1単位）

はじめに，第2学年の「課題探究」で取り組んだ課題研究を個人でまとめる活動を行った。 それに続き，課題研究における領域を超えた探究活動を基礎として，理科，数学の学習内容を ふまえた教科融合•領域融合型の学習を行った。生徒の自然科学及び社会科学に対する興味関心の向上につながるテーマで探究的•発展的な実験，実習を中心とした授業を通じて，生徒の科学的探究力や問題解決力を伸長することができた。（p． 37 1．8「科学探究」参照）

1．8．「人文科学課題研究 II」（普通科人文科学コース第3学年•1単位）

時事問題や異文化理解等に関する英語のテキストを用いた学習を通して，英語による研究テ ーマ探しを行ったのち，課題を設定し，英語の情報を収集し，英文を読み，考察した内容を英語で発表する活動を行った。A L T のサポートを得ながら，レポート作成，発表，テーマにつ いて英語で討論する活動を通して，英語による発信力を育成するとともに，個人による研究活動を通して，多面的な視点で物事を考える思考力と探究力を育成することができた。

2．課題研究を充実させるためのフィールドワーク，大学•企業等との連携，国際共同研究等

野外実習，大学や研究機関の研究室見学，国際交流等の実践により，生徒の主体性や学習意欲が高まり，英語によるプレゼンテーション能力及び国際性の伸長が見られた。研究開発第1期目から実施されているものも多く，「事業評価表」で活動の評価を行いながら，事業改善を繰り返してきている。（p．70－71 事業評価表参照）

野外実習は，例年1泊2日の泊まり込みでウニの発生実験を行っているが，今年度は新型コ ロナウイルス感染拡大の影響で宿泊を断念し，日帰りでの実施となった。限られた時間の中で，生徒たちは海洋生物採集と観察，ウニの人工授精，ウニの発生実験•観察を行い，ウニの卵割 の初期段階までを観察することができた。事後アンケートでは，「今回の行事を通して科学的探究力が増したか」の問いに対しては全員が肯定的に回答しており，実習の所期の目的は達成 されたと言える。

関東サイエンスツアーは，例年，関東方面の大学や研究所で研修を行うが，今年度は日帰り で県内の 2 校の大学での研修となった。一部の研究室では実験室を使用することができ，大学 の教員の講義を聞き実験実習を行うことができたが，多くの研究室では感染拡大防止のため滞在時間が限られた。そのため，事後アンケートにおいては昨年度と比較して「大学や研究施設 で行われている研究に興味を持ち，研究者や技術者に質問できたか」の問いに対する肯定的な回答が減少した。それでも，全体的には多くの生徒が肯定的に回答しており，研究への関心は深まったと言える。

韓国大田科学高校との交流では，今年度は韓国高校生の来日時に行われている共同研究のた めの合同合宿と大学実験セミナーを中止した。また，韓国訪問と訪問時に行っている DSHS International Science Fair における発表も中止されたので，今年度はWebによる交流と意見交換，発表会の実施にとどまった。一方，大学実験セミナーは1月に時期を移し，本校単独で行った。

3．授業（一般科目の授業）における「探究型」授業の展開とその成果の検証

S S H の学校設定科目を担当した教員が増加するにつれて，一般科目の授業内でも「探究の プロセス」を重視した授業が増加した。特に平成 25 年度からは，進路指導課が中心となり「習得型」の授業から「探究型」の授業への転換を目指して，全校を挙げて授業改善に取り組んで きた。3期目指定以降は，通常授業においても，探究学習を通して培われた「課題発見 \rightarrow 課題探究•課題解決 \rightarrow 共有」のサイクルを用いて実践が行われた。「主体的，対話的で深い学び」 に向けた授業改善が推進され，生徒による授業評価において「グループワークやペアワークな どが効果的に取り入れられている」「考えさせる授業の工夫がなされている」等の値が上昇し ている。（p．57 4）－5 一般の授業における「探究型」 授業の展開とその成果の検証参照）
（2）第3学年における科目融合•領域融合型の探究学習の研究開発
目標 第3学年において科目融合•領域融合•文理融合型の探究学習を行い，企業との連携を通 して実社会における現実的な問題に取り組むための「探究力」を育成し，生涯にわたり継続的に学び続ける人材を育成する。

1．「課題探究III」（理数科第 3 学年• 1 単位）における科目融合•領域融合型の探究学習の実施数学•物理コースと生物•化学コースの 2 つのコースを開設した。数学•物理コースでは， いくつかの物理現象についての数学モデルを作成し，数学（微分方程式）の知識を活用するこ とによって課題を解決する能力を身につけることを目指した。授業は，微分方程式の基礎を学 び，回転する水面の形及び冷却するときの温度変化などを例として，数学モデルの作成法を習得した後，グループごとにテーマを設定して探究活動を行うという形をとった。

生物•化学コースでは，生物を題材として，生命現象を化学的，数学的に考察することを目指した。微分方程式の基礎を学び，酵素カタラーゼによる過酸化水素の分解の反応速度の定量化を例に，微分方程式よりアレニウスの式を導き，酵素反応の活性化エネルギーを求め，無機触媒と比較する探究活動を行った。

開発した教材への取組により，習得した知識を活用する課題解決のプロセスを通して，発展的な学習に対する意欲や自然科学に対する興味，関心を高めることができた。生徒アンケート の調査結果からも，多くの生徒が「課題探究III」に積極的に参加し，授業を楽しむことができ たと思われる。

2．「通常科目（一般科目及び理数科目）」における領域融合の取組
「課題探究III」の領域融合学習の取組を，低学年の通常科目においても応用•実践するため に，今年度は数学と理科の教員が協力しながら，生徒の数学の活用力を向上させるための数理融合学習の教材開発を行った。理数科第 1 学年 の「理数数学特論」において授業を実践し，生徒アンケートによる検証を行った。

物理分野の中から最小作用の原理について のトピック（光の屈折，最短経路）を選び，数学を活用して現象を解析する教材を開発した。第1学年段階における数学の履修状況に留意 して，図形的な視点で議論を進めるように授業
内容を構成した。授業に対する生徒の反応は概 ね良好であり，意欲的に課題に取り組んでいた。授業の中に講義，グループワークおよび実験 をコンパクトに組み込むことにより，主体的な学習姿勢を引き出すことができたと考えられ る。

3．「探究基礎」における領域融合の取組

「探究基礎」において文理融合，領域融合的な調査，考察を必要とするテーマでディベート を実施することによって，実社会における現実的な問題に取り組む「探究力」を育成した。「デ イベート論題レクチャー」では，理科の教員が科学的な説明を，地歴公民•英語の教員が社会科学的な説明を行うことで，テーマに関して押さえておくべき前提となる知識を提供した。今年度は新型コロナウイルス感染拡大の影響でディベートは行えなかったが，「ディベート小論文（紙上ディベート）」において，領域融合的なテーマを取り扱つた。
（3）生徒の自己評価能力を育成し，生徒自身が探究活動に生かせる評価方法の研究開発
目標 パフォーマンス評価を充実させ，生徒自身が探究活動に生かせる評価方法を確立し，生徒の自己評価能力を育成する。

1．ルーブリックによるパフォーマンス評価の充実と生徒参加型ルーブリックの取組

課題研究をはじめとして，すべての学校設定科目，フィールドワーク，実習等における活動 のパフォーマンス課題に対して，S S H 企画推進室と授業担当者の話し合いによりルーブリッ クを作成している。ルーブリックは年度毎に更新•改良を重ねており，生徒に提示することで，到達目標を共有し，生徒の主体的学びを促すのみならず，指導と評価の一体化を進め，教師の指導の改善に生かすことで指導の質を高めている。「課題研究II」では，グループ研究の指導形態をとつているが，1人1冊の研究ノート～の記入と 1 人 1 本の研究論文の提出を課し，研究ノートの記載内容や研究論文の評価を踏まえて，個人の評価を行った。研究ノートにルーブ リックを明記することで生徒の意識を継続させ，研究グループとしてではなく，生徒個人に評価をフィードバックすることができた。

また，生徒に「ルーブリックに付け加えた方が良いと思う観点」を挙げさせ，生徒の視点を考慮した「生徒参加型ルーブリック」を導入した。学校設定科目「探究基礎」においては，こ のルーブリックを使用することで，生徒がディベートの準備を円滑に進めることができ，論理的な思考を深めることができた。「探究基礎」は今年度はディベート小論文（紙上ディベート） となったが，この活動にも新たなルーブリックを作成し生徒に提示した。

学校設定科目「プレゼンテーション\＆ディ スカッション（ P \＆D）」においては，昨年実施した生徒アンケートでの生徒の意見や， ALT（外国語指導助手）や英語科教員との話し合いに基づき，生徒の実情から見た目指 すべき目標と評価基準が合致するようにルー ブリックを改訂した。その改訂版ルーブリッ クを用いて，発表毎に生徒は自己評価を行い，
（P\＆D）評価基準（ルーブリック）を事前に提示しました
が，発表の準備をする上で参考になりましたか？
自分に足りない部分を次の発表までに補っていくということができた。ルーブリックに被評価者の意見を取り入れることは近年注目されてきており，今後もこの「生徒参加型ルーブリック」 の取組を推進したい。（p． 67 学校設定科目評価表参照）

2．1．「探究力」を測定する客観検査の開発とEIの概念を用いた「探究力」の伸長度の測定

研究開発2期目に運営指導委員会の指導のもと開発した Can－do 形式による探究力検査に加 えて，3期目からEI（Emotional Intelligence）の概念を用いた探究力検査を開発した。E I と は日本語で「情動知能」や「感情知能」などの用語が当てられている心理学用語であり，E I の概念を用いた検査を行う企業が増加してきている。本校ではE I の専門家である國藤進名誉教授（北陸先端科学技術大学院大学）の指導のもと，「自己対応力」「対人対応力」「状況対応

力」「創造力」の 4 観点から「探究力」を測定し数值化を試みた。昨年度，この「探究力」を測る客観検查による測定結果が，課題研究を中心とした探究活動に起因するものか否かを検討 するため，地域の高等学校の協力を得て検查を実施した。近隣の協力校では課題研究を実施し ているコースと実施していないコースに検査を受けさせ，統制群と実験群を作ることができ，課題研究が生徒の「探究力」育成のために，重要な役割を果たしていることが実証された。

（p．54－56（4）実施の効果とその評価参照）

2．2．業者テストを用いた「探究力」の測定（補足データによる検証）

GPS－Academic（株式会社ベネッセコーポレーション）の結果から，第1学年次12月か ら第 2 学年次 12 月にかけて，「協動的思考力」は横ばいであったが，「批判的思考力」「創造的思考力」において伸長が観察された。この結果は，E I の概念を用いた「探究力」検査の結果と一致しており，「探究力」の伸長を裏付けている。なお，業者テストはEIの概念を用い た「探究力」検査を補足するデータを得るために実施した。（p．54－56（4）実施の効果とその評価参照）

2．3．パフォーマンス課題による「探究カ」テスト
「探究力」を測定するための客観テストの作成は，運営指導委員会の提案を受けて一時中断 していたが，数値化されたデータを個々の生徒のレベルで把握するために，パフォーマンス課題による「探究力」テストとして研究を再開した。学習した知識や理解した内容を再度呼び出 し，作動状態にさせ，「課題発見」「課題解決」「多面的分析」につなげるパフォーマンス課題 を解かせ，「探究力」の測定を試みた。このパフォーマンス課題の成果をポートフォリオとし て保存し，E I 等の他の指標と組み合わせて個々の生徒の「探究力」伸長度を測定する取組を試行した。

（2）研究開発の課題

（1）課題研究を中心に据えた全校での3年間の学習体系の研究開発

○学校設定科目（一般科目との関係性とその問題点）

1．「総合科学」及び「課題探究I」（理数科•1年）

理数科の生徒は，第1学年において生物分野•地学分野は「理数生物」または「理数地学」を いずれも 4 単位履修しており，また野外実習も実施して基礎的な実習を終えているため，課題研究のための基礎学習としては十分と言える。一方，物理分野，化学分野は「総合科学」において実験を通して学習しているが，課題研究のための基礎学習としては十分とは言えない。また，数学の課題研究に向けての準備や基整学習を行うためには，「理数数学 I 」及び「理数数学特論」 では不十分である。「課題探究I」における課題研究のテーマ設定を充実させるためにも，1年次での基礎学習をさらに充実させなければならない。

2．「探究基礎」（普通科•1年）

後半の基礎課題研究において，理系希望者が多く，実験室•設備の不足が大きな課題となって いる。理系希望者には，実験の基礎技術やデータ処理能力の必要性から，全員にこの探究スキル育成講座（実験の基礎学習）を受講させてきたが，今後は数学の課題研究のための基礎学習を導入することによって，普通科における数学の課題研究の充実を図るとともに，実験室•設備等の問題にも解決の系口を見つけていきたい。

3．「プレゼンテーション \＆ディスカッション」（全科•1年）
「英語表現I」をはじめ教科「外国語」との連携を深めながら，英語による発表プレゼンテーシ ョン能力，ディスカッション能力育成に成果をあげてきているが，研究開発途中から，特にディ スカッション能力育成の方法が課題として残されてきた。今後はさらに「外国語」との連携を深 め，英語で討論する機会を増やし，ディスカッション能力のさらなる充実を目指していく。

4．「課題探究 II」（理数科•2年），「課題探究」（普通科普通コース・2年）
理数科の「課題探究II」においては「こまつ研究サポートプログラム」による報告会が充実し，生徒が研究の正しい手法，専門的な研究内容について学ぶ機会となったとともに，教員が探究活動の指導法を学ぶ機会とすることもできた。しかし，普通科の「課題探究」においては，講演会 や全体での指導に留まり，外部指導者の少人数での指導の機会を与えることができず，校内の専門の教員の指導に留まった。今後は，普通科においても少人数での専門家の指導の機会を増やし ていかなければならない

5．「人文科学課題探究 I 」（人文科学コース・2年）
研究班のメンバーによる議論で導かれた結論の妥当性を客観的に評価する点に困難が残る。今後は専門家の意見を入れながら，説得力のある結論を導ける研究の在り方を念頭に，指導してい かなければならない。
（2）第3学年における科目融合•領域融合型の探究学習の研究開発
「課題探究III」（理数科•3年）においては，生徒は科目融合•領域融合型の学習に対して意欲的に授業に取り組み，自然科学に対する視野を広げることができたものの，それをその後の探究活動へ十分につなげられなかったことが窺われる。より効果的な授業にするためには，実験の原理や操作及びデータの処理，実験結果に対する解釈などについて考える時間を十分確保すること が必要となる。「科学探究」（普通科•3年）においても同様の問題点があり，今後の検討課題で ある。
（3）生徒の自己評価能力を育成し，生徒自身が探究活動に生かせる評価方法の研究開発
1．ルーブリックによるパフォーマンス評価の充実と「生徒参加型ルーブリック」の取組
「生徒参加型ルーブリック」の取組が学校設定科目に留まっている。通常科目の授業にも広げ て行く必要がある。また，「生徒参加型ルーブリック」の取組は生徒のアンケートによるものが中心だったが，ルーブリックに被評価者の意見を取り入れるためには，生徒の自己評価による評価の言語化が重要である。今後はポートフォリオの記述の分析をはじめとして，他者の評価との比較により「ルーブリックが生徒の言葉で書き換えられる」段階にまで発展させていかなければ ならない。

2．「探究力」の伸長度を測定するための検査（カリキュラム評価）
EIの概念を用いた本校独自の探究力検查 により「探究力」を数値化することができた が，EI検査は単独で「探究力」の伸びを証明するには不十分である。今後はEIの精度 を高めるとともに，ポートフォリオや従来の探究力調査，客観テスト等，質の異なるデー夕を組み合わせてカリキュラム評価を行って いくことが望ましい。（1）E I 検査（情動知能検査），（2）PISA型の客観テスト及び探究 カテスト及び業者テスト，（3）ポートフォリ

（カリキュラム評価の体系） オ，（4）パフォーマンス課題による変容の調査によるカリキュラム評価のトライアンギュレーションを確立していかなくてはならない。

（3実施報告書（本文）

○指定第 3 期目SSHの5年間を通じた取組の概要

（1）課題研究を中心に据えた全校での 3 年間の学習体系の研究開発

【仮説（1）】「探究力」を育成するためには，すべての授業の基礎として3年間の継続的探究活動 が必要である。

【実践（1）－1】第1学年における探究型の学校設定科目と基礎課題研究

第1学年に「総合科学」「課題探究 I 」（理数科）及び「探究基礎」（普通科）を設置し，探究型の授業を展開し，課題研究の基礎学習とした。

理数科に設置された「総合科学」においては地歴•公民，保健，家庭の領域で教科横断型の授業を行らとともに探究型の授業を展開し，研究者に求められる倫理観を養らとともに，身近 な事象から課題を発見する能力を育成することを目指した。また，物理，化学の実験を通して，実験の組み立て方やデータ分析の方法を身に付けさせた。

同じく理数科に設置された「課題探究I」においては，ものづくりを中心としたプロジェク トを行い，理科で学んだ知識を工学分野に生かす能力を身に付けさせた。また，物理，化学，生物，数学の少人数に分かれて，課題研究のテーマ設定の示唆となるプロジェクトを展開した。続いて課題研究のテーマを設定し，先行研究調べを行い，教員のカウンセリングを得ながら課題研究を開始した。

普通科に設置された「探究基礎」においては，はじめに課題研究に必要な論理的思考力を身 に付けるためディベート学習（本年度は紙上ディベート）を行い，単なる自分の意見を述べる のではなく，証拠による論証を行う習慣を身に付けさせた。後半は文系希望者は教員の指導の もと，情報•資料収集の方法や資料•文献の取り扱い方を学習しながら基礎課題研究を行い，複数クラスでの発表会を行った。理系希望者は「探究スキル育成講座」として基本的な実験操作の仕方や実験の組み立て方，データ分析の方法を学び，それぞれのグループで独自の実験を行い，結果を発表した。

【実践（1）－2】全校における課題研究

第 2 学年に学校設定科目「課題探究 II」（理数科），「課題探究」（普通科普通コース），
「人文科学課題研究 I」（普通科人文科学コース）を設置し，全校生徒が課題研究に取り組ん できた。特に，「課題探究II」及び「人文科学課題研究I」は週 2 単位で実施することにより，研究のための十分な時間を確保した。「課題探究II」は第1学年でテーマ設定を行い，既に研究を開始しているが，第2学年で大学教員等の外部の指導者を交えて，あらためてテーマの再検討を行らなど，生徒が真に探究したいテーマを発見できる環境を整えている。

普通科普通コースは理系も文系も「課題探究」において週 1 単位の課題研究を行ってきた。 いずれも限られた時間の中で，課題設定のためにできらる限り多くの時間をかけ，生徒の主体的な研究テーマ設定を促している。理数科や人文科学コースとは異なり，大学教員等の外部の指導を受ける機会は十分とはいえない。その代わり，テーマ発表会，中間発表会等に校内の複数の教員が評価，指導を行う等，校内の複数指導体制を整え，全校体制で指導に臨んでいる。

【実践（1）－3】英語による発表•討論のための学校設定科目の設置

第1学年に全科生徒が履修する学校設定科目「プレゼンテーション\＆ディスカッション」を設置し，英語の資料を収集し，テキストを読解し英語で発表，発表に対する討論して活動を通 して英語で発表し討論するための能力を育成してきた。研究年度が進むにつれて，特に「英語

表現 I 」との連携を深め，A L T も活用した発表•討論の実践的学習を行うことができた。

【実践（1）－4】課題研究における大学•企業の連携拡大及びシステム化

本校の課題研究に対する大学教員や企業の研究者からの指導助言を適時的に受けるために，「こまつ研究サポートプログラム」を立ち上げ，各連携機関 $1 \sim 2$ 名の先生方を「こまつ研究 サポーター」に任命した。あくまでも主導は本校の教員とし，必要な時に各連携先の「こまつ研究サポーター」にお願いして，課題設定に行き詰まった時，課題設定時に先行研究を学習し たい時，研究を進めて行くらちに専門家の意見を聞きたくなつた時，適切な指導助言者を紹介 していただいてきた。また，データ収集のための技術が不足している時や，データの整理方法 に指針がほしい時なども有効であった。

サポートのタイミング

このサポートシステムは，担当教員が必要に応じて大学や企業に連絡を取り，グループごと に行ってきたが，研究開発2年目から，理数科を中心に年3回ほど課題研究経過報告会を開き， そこに数人の大学教員（研究サポーター）を招き，グループ毎に指導していただく機会を設け た。各グループの研究のテーマ・方向性が決まった段階で，第1回の報告会を開き，研究サポー ターの先生方を招き，グループごとの報告会を行い，ルーブリックによる評価を行う。また，サ ポーターの先生方には専門的知見からの生徒への助言や他の助言者の紹介をお願いしてきた。第 2 回は研究がある程度進んだ段階で，データの集め方や分析方法，今後の研究の進め方の指導を いただき，軌道修正をする。第3回以降は各グループで研究室訪問等を行い個別に指導を受ける。 S S H 3 期目 5 年間でこの流れが定着してきた。また，近年は理数科 1 年生にも研究報告会を実施し，外部の意見を入れながら十分な時間をかけたテーマ設定を行うことができた。

【実践（1）－5】課題発見から課題探究に至るプロセスの共有によるアクティブ・ラーニング推進
生徒が自ら課題を発見し，主体的•協働的に「正答のない問題」「答えが一つに定まらない問題」に取り組むために，すべての授業において，思考力育成のための探究型の授業や学習者中心の授業を展開し，グループディスカッションやピア・インストラクション，知識構成型ジ グソー法等のアクティブ・ラーニングの手法を積極的に取り入れ，通常授業の質的転換を図っ てきた。その結果，生徒による授業評価において「考えさせる授業の工夫がなされている」及 び「グループ活動やペアワークなどが効果的に取り入れられている」の項目の値が 3 期目指定以降の5年間で上昇してきている。

－課題研究を充実させるためのフィールドワーク，連携及び国際共同研究

フィールドワークやサイエンスツアー，国際科学交流を含めたS S Hに係るすべての行事を課題研究を充実させるための行事として位置づけてきた。

「生物野外実習」においては試料の採取の方法，試料の扱い方，実験観察の仕方等，課題研究の基礎学習としての要素に重点を置いてきた。また「地学野外実習」においても，資料を採

集し，観察することにより実験観察の能力や資料分析能力の育成に重点を置いてきている。ま た，サイエンスツアーや大学実験セミナーも，大学，研究機関及び企業を訪問し，課題研究のた めの課題発見学習を行らとともに，継続的連携を行い課題研究に対する支援をお願いしてきた。

海外交流においても，交流相手校との共同研究や課題研究の発表を中心としたものとしてい る。理数科の生徒は韓国の大田科学高校との交流を行っているが，大田科学高校の生徒が来校
（来日）するときに全員で研修（大学実験セミナー）に参加し，韓国の生徒とグループを組ん で実験•実習を行い，実験で得られたデータやその分析を英語で発表している。また，韓国を訪問する本校生徒は韓国の生徒と共同研究を行い，韓国訪問時に他の課題研究も含めて，DSHS International Science Fair において発表を行う。研究開発1期目，2期目及び3期目の第1年次までは両校による口頭発表を行ってきたが，第 2 年次から大田科学高校からの提案もありポ スター発表会を行っている。発表をポスターで行らことにより，より多くの発表を行らことが できるとともに，発表後の質疑応答により，英語による討論能力を育成することもできる。今年度は，すべてWeb 会議システムによる交流となったが，これを機会に今後もWeb 会議シス テムを利用して，共同研究のための意見交換を行っていく予定である。
＜韓国高校生との共同研究及び DSHS International Science Fair（韓国）での発表概念図＞

【評価】（成果と課題）

成果

- 全校における課題研究の推進により「探究力」の伸長が見られた。
- 英語による発表•討論のための学校設定科目「プレゼンテーション\＆ディスカッショ ン」の設置により英語による表現力，英語で討論する力が育成された。
－課題研究における大学•企業の連携拡大及びシステム化（「こまつ研究サポートプロ グラム」）により課題研究の質が向上した。
－探究型の学校設定科目に関わる教員が，毎年全体の 8 割程度を占めるまで増加し，課題発見から課題探究に至るプロセスを共有できた。また，それにより，通常授業にお けるアクティブラーニング（主体的•協㗢的な学び）が推進された。

課題
－課題研究を中心に据えた3年間の学習体系により「探究力」が伸長したが，「探究力」育成の取組を汎用化し，成果普及につなげるには，通常授業における課題発見型の授業と探究のプロセスをより明膫なものにしなくてはならない。

【仮説（2）】第3学年において科目融合，領域融合型の学習を行うことが，生涯にわたる継続的な学びに有効である。

【実践（2）】学校設定科目「科学探究」「課題探究III」における領域融合学習と教材開発

第1学年，第2学年における「正答のない問題」への取組，また通常授業における「探究力」及び基礎学力の青成を受けて，第3学年の普通科の学校設定科目「科学探究」，理数科の「課題探究III」において高等学校の教育の枠組みを超えた，科目融合•領域融合的な学習を行い，実社会における現実的な問題に取り組む「探究力」を育成してきた。

研究開発第 1 年次においては，「理数物理」の授業と 2 期目に既に設置されていた「科学探究」（理数科•普通科共修）において，数学と理科の教員が協力しながら，数学の活用力を向上させるための数理融合学習を行った。第 2 年次以降も教材開発を重ね，物理と数学以外に生物と化学の教材も開発された。

研究開発第3年次からは，「科学探究」「課題探究III」の授業において「数学•物理コース」 と「生物•化学コース」に分かれて，領域融合学習を行った。「数学•物理コース」では，い くつかの物理現象についての数学モデルを作成し，数学（微分方程式）の知識を活用すること によって課題を解決する能力を身につけることを目指した。また，課題を解決するための数学 の重要性や数学を活用することの面白さを実感させることができた。「生物•化学コース」で は，生物を題材として，生命現象を化学的，数学的に考察することを目的とした。また，生命現象を実験し，考察するためには化学•数学の知識が不可欠であることを生徒達に実感させる ことができた。
研究開発第5年次となる本年度は，いずれのコースにおいても，微分方程式の解法を学び，具体的な事例を扱いながら基礎的な知識，技能を習得した後，グループごとに探究活動に取り組むというスタイルをとっている。専門的知識を十分に習得した後でなければ学習が困難なハ イレベルの内容を取り扱うため，「物理•数学コース」と「生物•化学コース」に分けている。 また，微分方程式等の大学レベルの数学を理解するためには，高等学校 3 年生の段階でなけれ ば不可能である。実際に，学習内容は高等学校 3 年生の段階としてはやや難易度が高いもので あったが，生徒は積極的に授業に参加し，モデリングや実験活動にとりくみ，研究開発の目的 は達成されたといえる。

【評価】（成果と課題）

成果
－学校設定科目「科学探究」「課題探究III」等における領域融合学習において，習得し た知識を活用する課題解決のプロセスを通して，発展的な学習に対する意欲や自然科学に対する興味，関心を高めることができた。

課題
－第3学年における領域融合学習において，数学を活用することの重要性を認識させる ことができたが，生徒の意欲をかき立て，高度な内容に挑戦させ，大学や実社会での課題解決につなげるには，さらなる教材開発が必要である。

（3）生徒の自己評価能力を育成し，生徒自身が探究活動に生かせる評価方法の研究開発

【仮説（3）】パフォーマンス評価を充実させることにより，生徒の自己評価能力を育成し，生徒自身が探究活動に生かすことができる。

【実践（3）－1】個々の活動，学校設定科目におけるパフォーマンス評価の充実

研究開発 2 期目の後半から，専門家の指導を受けながら，ルーブリックを作成しパフォーマ ンス評価を試行してきた。当初は，第1学年のディベート学習において，担当者全員が話し合 いルーブリックを作成，生徒に提示して，関係する全職員が評価に関わった。また，S S Hに関係する学校設定科目においてもルーブリックによるパフォーマンス評価を試行した。

研究開発3期目からは学校設定科目に加えて課題研究を充実させるための諸行事においても ルーブリックの作成が始まり，S S H 企画推進室と授業担当者の話し合いによりルーブリック を作成し，年度毎に更新•改良を重ねている。ルーブリックを生徒に提示することで，到達目標を明確にし，生徒の主体的な学びを促し，指導と評価の一体化を進めるのみならず，生徒の自己評価能力育成にも役立つことを目指してきた。
生徒の自己評価能力育成のための方策として，「生徒参加型ルーブリック」の取組がある。 ルーブリック作成に教員のみが関わるのではなく，生徒が「私たちのこのようなところをもっ と評価してほしい」と考える観点を取り入れてルーブリック作成に生かしていく。ルーブリッ ク作成に生徒が関わることによって，生徒の自己評価能力を育成し，主体性や学習意欲を高め るのが目的である。研究開発 1 年次から生徒にアンケートをとり，生徒の意見を反映させてル ーブリックに反映させてきた。しかし，ルーブリックに被評価者の意見を取り入れるためには，生徒の自己評価による評価の言語化が重要であることが明らかになった。現在は，生徒の自己評価を他者の評価と比較したり，活動の前後での自己評価の変容を分析したりする等の改善を模索している。

【実践（3）－2】生徒の「探究力」を測定し，伸長度を数値化•検証するための客観テストの開発研究開発第1年次に，「探究力」を測定するための客観テストを試作した。理科（物理•化学•生物），数学，外国語の各教科が「探究力」テストを作成したが，いずれのテストも各教科•科目の知識を活用する内容であったため，運営指導委員会から知識量がテストの成否に影響を及ぼし，「探究力測定のための客観テストとは言いがたい」との指摘を受けた。代わりに E I（Emotional Intelligence）の概念を用いた「探究力」測定の方法を提案され，研究を開始した。研究開発第2年次の後半から，専門家の指導を受けながら質問紙を作成し，本校独自 の探究力検査を作成し，本校の理数科に加えて，近隣の高等学校（2 校）の協力を得て検查を試行した。第3年次からは本校では全校生徒に，近隣の協力校では課題研究を実施しているコ ースと実施していないコースに検査を受けさせ，統制群と実験群を作ることができ，「探究力」検査としての一定の成果が検証できた。しかし，EI 検査のデータは未だ不安定であり，E I単独で「探究力」の伸びを証明するには不十分である。今後は，ポートフォリオや従来の探究力調査，客観テスト等，質の異なるデータを組み合わせてカリキュラム評価を行っていくこと が望ましいとの結論に至った。

物理，化学，生物，数学の各領域における「探究力」を測定するための客観テストの作成は，運営指導委員会の提案を受けて一時中断していたが，知識をどのように活用するか，得た知識 を通してどこまで思考を深められるかを個々の生徒のレベルで把握するために，パフォーマン ス課題による「探究力」テストとして研究を再開した。以下の手順で，学習した知識や理解し た内容を再度呼び出し，作動状態にさせ，「課題発見」「課題解決」「多面的分析」につなげ るパフォーマンス課題を解かせ，「探究力」の測定を試みた。このようなパフォーマンス課題

に 3 年間にわたり複数回取り組ませ，ポートフォリオとして保存し，EI 等の他の指標と組み合わせて個々の生徒の「探究力」伸長度を測定する。

$<$ 問題例1＞
（予備問題で風力発電の仕組みや稼働の条件等の技術的要因を示した後，）
（1）ほとんどの風力発電機の風車には細長い羽根が 3 枚取り付けられている。また，その羽根の角度 は，変化させられるようになっている。一方，家庭にある扇風機の羽根の枚数は 3 枚または 4 枚で あり，羽根の形状は風力発電機のものより，幅が広くなっている。風力発電機の羽根がこのような特徴を備えている理由を答えなさい。
（2）
（1）を検証するために，あなたが考えた実験 について説明しなさい。また，実験を行う際，留意すべきことや，あなたが予想する実験結果も合 わせて説明しなさい。

予備問題で使用したグラフ。問題文 に「風速が V_{2} に達すると，安全面の理由から，羽の回転数は増えない。」 とある。
$<$ 問題例2＞
（予備問題で，光合成に有効な光は何かを考えさせた後，）
「カーボンニュートラルを推進するための，エネルギー供給システムを考えなさい。」

【評価】（成果と課題）

成果
－パフォーマンス評価の充実により生徒自身が探究活動に生かせる評価方法を確立でき た。また，生徒参加型ルーブリックの取組により，生徒の自己評価能力を育成するこ とができた。
－E I（Emotional Intelligence）の概念を用いた探究力検査により生徒の「探究力」を数値化することができた。

課題
－E I の概念を用いた本校独自の探究力検査等により「探究力」を数値化することがで きたが，単独で「探究力」の伸びを証明するには不十分である。

（1）研究開発の課題

1 研究開発の目標及び研究テーマ

課題研究における「正答のない問題」への取組を基礎として，あらゆる学びの中で，批判的に物事をとらえ，課題を発見し，主体的•協働的に考え，生涯にわたり継続的に学び続ける「探究力」 を育成するための研究開発と実践を行う。そのための学校設定科目及び通常の授業を含めた教育課程の在り方，指導方法，大学，地域の企業との連携の在り方，評価方法を研究する。
（1）すべての授業において「探究力」の土台となる思考力，主体的•協働的に学ぶ力を育成し，課題研究を中心に据えた全校での3年間の学習体系を確立する。
（2）第3学年において科目融合•領域融合•文理融合型の探究学習を行い，企業との連携を通し て実社会における現実的な問題に取り組むための「探究力」を育成し，生涯にわたり継続的に学び続ける人材を育成する。
（3）パフォーマンス評価を充実させ，生徒自身が探究活動に生かせる評価方法を確立し，生徒の自己評価能力を育成する。

本研究では，「正答のない問題」及び「探究力」を以下のように定義する。

	教員によってあらかじめ答えが用意された問題とは異なり，課題研究 答のな問題 等の探究学習を始めとし，大学における研究や実社会における課題な ど，さまざまな分野での答えが明らかでない問題。
	課題発見力，課題解決力，批判的思考力，多面的分析力を身につけ，「正 答のない問題」に立ち向かう力。論理的思考力，主体的•協働的に学 ぶ力，言語能力等がその土台となる。

2 実践及び実践の結果の概要

（1）課題研究を中心に据えた全校での3年間の学習体系の研究開発

○ 学校設定科目

第2学年における課題研究のテーマ設定に資するために，第1学年に「探究スキル育成講座」「基礎課題研究」及びプレゼンテーションのための学校設定科目を設置した。生徒の探究心を満足させ るべく高度な課題研究を体験させ，大学での学びにつなげるための3年間の学習体系を確立した。《学校設定科目の体系》

〔第3学年〕

〔第2学年〕

〔第1学年〕

プレゼンテーション \＆ディスカッション（英語による発表と討論 \cdot 全クラス）
［理数科］

○ 課題研究を充実させるための，フィールドワーク，連携及び国際共同研究

ア 野外実習，大学•研究機関での体験実習の実施，科学系部活動の活性化
－生物と地学の分野のフィールドワークを中心とした実習活動に取り組み，実物を間近に見 るとともに，直に触れる体験を行ってきた。今年度は宿泊を伴う研修ができなかったため，生物野外実習は日帰りによるフィールドワークとなったが，連携する施設の協力を得て効率的に実習を行い，成果をあげることができた。
－大学や研究所において第一線で活躍する研究者から直接譵義や指導を受けてきた。これら を通して，科学に対する興味関心を高め，学ぶ意欲の育成を図ってきた。今年度は県外へ のサイエンスツアーや宿泊を伴ら実験セミナーを中止せざるを得なかったが，県内の大学 の協力を得て，県内でのサイエンスツアーと校内での大学実験セミナーを実施することが でき，生徒の意欲関心を高めることができた。
－各種科学技術コンテストへの積極的参加やその準備を通して，数理能力の向上を図った。
1 国際科学交流と共同研究の推進
－韓国の大田科学高校と年間にわたる継続的な研究交流を行い，課題研究及び共同研究の発表を両国•両校で行ってきた。大田科学高校の来日時に，共同研究のための合同合宿を実施した。本校生徒の渡韓時に研究発表会と研究に対する質疑を行い，英語で発表し議論す る能力の充成を図ってきた。今年度はWeb による交流となったが，複数回にわたる情報交換と意見交換及び発表会により，交流の成果を十分にあげることができた。
（2）第3学年における科目融合•領域融合型の探究学習の研究開発
－学校設定科目「課題探究III」における融合科目の教材開発及び実施
「数学•物理コース」，「生物•化学コース」にわかれ，科目融合•領域融合型の学習に取 り組んだ。教科•科目の朹組みを取り払った探究活動を通して，ある分野の知識•技能を他の分野に活用する手法を学び，レポート及び筆記テストの結果からその成果を検証した。
－学校設定科目「探究基礎」のディベート学習における領域融合テーマへの取り組み
＂脳死を人の死とすることの是非＂＂遺伝子組み換え食品の是非＂等を論題とするディベー ト学習に取り組み，社会問題に対して科学的な視点をもって議論する能力の育成を図った。今年度は小論文の指導方法を応用した紙上ディベートの形をとったが，扱った内容は通常のディ ベートと同じで，領域融合のテーマが維持された。
（3）生徒の自己評価能力を育成し，生徒自身が探究活動に生かせる評価方法の研究開発
－個々の活動，学校設定科目におけるパフォーマンス評価の充実
学校設定科目「探究基礎」「プレゼンテーション\＆ディスカッション」「課題探究II」「課題探究」「科学探究」においてルーブリックによる評価を行うことにより，生徒に評価をフィ ードバックし，探究活動に生かせる評価方法の研究開発に取り組んだ。
－生徒の自己評価能力を育成するための生徒参加型ルーブリックの作成
過去 2 年間のアンケート調査で記入させた，「ルーブリックに付け加えた方が良いと思ら観点」を精査し，自己評価能力を育成するためのルーブリック作成を作成•実施した。
－生徒の「探究力」を測定し，数値化•検証するための客観検査の開発
E I（Emotional Intelligence）の 3 要素である（1）自己対応力，（2）対人対応力，（3）状況対応力に 4 つ目の要素（4）創造力を加えた 4 観点の力を検査することによる「探究力」検査を実施し，結果を昨年度の値と比較し，生徒の「探究力」の伸長度を検証した。

（2）研究開発の経緯

（1）課題研究を中心に据えた全校での3年間の学習体系の研究開発

4 月	学校設定科目の設置 「総合科学」（第 1 学年理数科•2単位） 「課題探究 I 」（第 1 学年理数科• 1 単位） 「探究基礎」（第 1 学年普通科•1単位） 「プレゼンテーション\＆ディスカッション」 （第1学年全科•1単位） 「課題探究 II」（第2学年理数科•2単位） 「課題探究」（第 2 学年普通科文系•理系• 1 単位） 「人文科学課題研究 I」（第 2 学年普通科人文科学コース・2単位）「課題探究III」（第 3 学年理数科• 1 単位） 「科学探究」（第 3 学年普通科普通コース・ 1 単位） 「人文科学課題研究 II 」（第 3 学年普通科人文科学コース・ 1 単位）
7月15日	「課題探究II」第1回中間報告会（こまつ研究サポートプログラム）
7月23日	生物野外実習（のとふれあいセンターとその周辺）
8 月11日	全国S S H 生徒研究発表会 1 次審査（オンライン開催）
8月18日	全国S S H 生徒研究発表会 2 次審査（オンライン開催）
8月21日	地学野外実習（犀川大桑層）
8 月25日	第1回S S H 石川県運営指導委員会
9 月16日	「課題探究II」第2回中間報告会（こまつ研究サポートプログラム）
10 月25日	化学グランプリ2020（オンライン試験）
11月1日	生物学オリンピック 2020（オンライン試験）
11 月 3 日	「課題探究II」校内発表会（こまつ研究サポートプログラム）
12 月 9 日	令和 2 年度 S S H 研究発表会 - 公開授業「理数物理」（理数科 2 年生） - 公開授業「理数数学特論」（理数科1年生）
12月16日	石川県S S H 生徒研究発表会（Web 配信視聴）
1月15日	「課題探究」校内発表会（第 2 学年普通科普通コース理系）
1月19日	「人文科学課題研究I」校内発表会
1 月20日	「課題探究II」ポスター発表会（こまつ研究サポートプログラム）
2月18日	「探究基礎」基礎課題研究•探究スキル育成講座ポスター発表会

（2）第3学年における科目融合•領域融合型の探究学習の研究開発

4 月～	「探究基礎」ディベート学習における領域融合テーマへの取り組み
	科目融合•領域融合科目の実施 「課題探究III」（第3学年理数科•1単位） 「科学探究」（第3学年普通科普通コース・1単位） 「人文科学課題研究II」（第 3 学年普通科人文科学コース・ 1 単位）

（3）生徒の自己評価能力を育成し，生徒自身が探究活動に生かせる評価方法の研究開発

4 月	学校設定科目「プレゼンテーション\＆ディスカッション」ルーブリック作成のための教科会①
	「探究力」客観検査の改善（1学年理数科）
7 月	学校設定科目「プレゼンテーション\＆デイスカッション」ルーブリック作成のための教科会（2）
	「探究力」客観検査の実施（本校全科生徒）
9月24日	学校設定科目「探究基礎」ディベート学習（今年度はディベート小論文）におけ るルーブリックを使用した生徒による最終自己評価と振り返り
9 月	学校設定科目「探究基礎」ディベート学習における評価に関するアンケート調査
	学校設定科目「プレゼンテーション\＆ディイカッション」ルーブリック作成のための教科会③
12 月	「探究力」客観検査の実施（本校全科生徒）
	「探究力」客観検査の実効性を検証するためのパフォーマンステストの実施

（3）研究開発の内容

（1）課題研究を中心に据えた全校での3年間の学習体系の研究開発

【仮説（1）】3年間にわたる継続的な探究活動に取り組むことによって，課題解決能力，批判的思考力，表現力などの「探究力」を育成することができる。

1．学校設定科目

第1，第2，第3学年において，理数科，普通科のそれぞれを対象とする以下の学校設定科目を設置する。「理科」「数学」「理数」「英語表現」などの一般教科•科目との関連を図り ながら，3年間にわたる有効な教育課程の編成の研究を行う。生徒の科学的探究力，表現力の伸長からその成果を検証する。

3 年間を通した課題研究に係るカリキュラム

学科・コース	第 1 学年		第2学年		第3学年		対象
	科目名	単位数	科目名	単位数	科目名	単位数	
理数科	課題探究 I	1	課題探究 II	2	課題探究III	1	理数科全員
	総合科学	2					
普通科普通 コース理系	探究基礎 （普通科全員）	1	課題探究	1	科学探究	1	2， 3 年普通科普通コース理系
普通科普通 コース文系							2， 3 年普通科普通コース文系
普通科人文 科学コース			人文科学課題研究 I	2	人文科学課題研究 II	1	普通科人文科 学コース
全科共通	$\begin{gathered} \text { プレゼンテーション\& } \\ \text { デイスカッション } \end{gathered}$	1					1 年生全員

1． 1 「総合科学」及び「課題探究 I 」（第 1 学年理数科• 2 単位 +1 単位）
［1］研究の目的
－家庭科，保健体育科，地歴•公民科等の教科の朹を超えた横断的学習に取り組むことを通 して，様々な分野に対する科学的な見方を身につけることを目指す。
－物理，化学分野の実験を通して，基礎的な知識や実験技術を習得する。続いて物理，化学，生物各分野の探究活動を体験し，科学的手法を用いて課題を解決する力の伸長を図る。
［2］研究内容•方法•検証
前年度の取り組みを改善しながら実施する。今年度は，ものづくりを中心とする工学的な プロジェクト学習の教材開発に取り組んだ。定期考査及び生徒に対するアンケートに加え，実験•実習後の生徒のレポートや感想をもとに検証を行った。
＜教育課程編成上の位置付け・一般科目との関係＞
第 2 学年の「課題探究II」に向けて， 3 学期にテーマ設定を行う。第 1 学年では理科は「理数生物」のみを履修するため，実験を通して化学分野のテーマ選びに資する学習を行う。物理分野では理数数学の進度を考慮しながら，実験を選んで進めていく。最後に「理数数学I」 の進度を考慮して，数学の課題研究に関してその手法を学習する。

「総合科学」「課題探究 I 」年間計画

月	学習内容	学習目標
6 月	ガイダンス	教科の目的，1年間の流れの確認。
	生活科学調理科学	- 身近な生活を科学の視点で捉える。 - 日常用いられる食品の性質について理解する。
7月	化学分野（物質の構成と化学結合） 実験 1 ：昇華•同素体•炎色反応 実験2：食塩の融解 実験 3 ：酸と塩基	－基本的な物質（物質の構成粒子，結合）の知識及び物質量の扱い方を習得する。 －講義，実験を通して，化学に対する興味関心を高める。
9月 10 月	物理分野（力学） 実験 1 ：ビデオカメラを用いた重力加速度の測定 実験 2：ばね定数の測定	－基本的な力学（運動学，力学）の知識及び実験技能を習得する。 －講義，実験を通して，物理学に対する興味関心 を高める。
11 月	健康科学 －社会生活と健康，環境衛生地歴公民分野 －科学者に求められる倫理観	- 感染症に対して，レポートを作成する。 - 科学技術の発展を歴史的観点から捉え，現代社会では科学技術のコントロールが難しくなって いることを理解させ，将来科学技術者としてど らあるべきかを考察させる。
	数学分野 －データ解析	－一般科目の内容をより発展させた内容を学び，数学に対する視野を広め，興味関心を高める。 －課題研究に向けてデータの処理の方法を学び，生徒に課題研究へのイメージを抱かせ，意欲を喚起する。
	情報分野 実験：ばね振り子の周期測定	－簡単な物理実験に取り組み，得られたデータを処理することをコンピューターで行うことによ り，表計算ソフト等の活用法を習得する。
12 月 1 月	ものづくり学習 「ゆっくり，正確に着地するパラ シュート」 「Volley ball challenge」	－ものづくりを中心とするプロジェクト学習を通 じて，理科で学んだ知識を工学分野に活かす能力を身につける。
2 月	大学教員による講演会 「課題研究の意義と楽しみ方」課題研究テーマ設定 情報検索（インター补ト，図書，報告書） テーマ設定に対するアドバイス	－大学教員の講演を聴くことにより，課題研究に対する生徒の意識を高めるとともに，基本的な課題研究の進め方を学ぶ。 －「課題探究II」（第 2 学年）に向けて，生徒が自 らの課題研究テーマを設定し先行研究調心゙を行 ら。
3月	課題研究	－第2学年で取り組む課題研究活動を開始する。

［3］成果と課題
＜教科横断学習＞
生物と家庭科の融合学習として，今年度から始まったレジ袋有料化からマイクロプラスチ ックと環境問題について考察した。5 大プラスチックを学習し，実験で生分解性プラスチッ クを作成した。その後，これからの生分解性プラスチックのあり方についてレポートを作成 した。課題としては，作成した生分解性プラスチックの性質についての検証実験が行えなか ったので，学習計画を見直したい。
＜物理，化学基礎学習〉
前半では化学分野，後半では物理分野のいずれも基礎的な知識及び実験技能の習得を図っ た。実験では，連続した 2 時間の実験により，データの分析や考察時間を十分確保すること ができた。物理分野の学習では，理数数学の習熟度を考慮して，学習する単元を限定して授業を行らようにしてきたが，今年度は必要な数学の知識を授業内で教えることで，やや進ん だ内容まで扱った。また，簡単な数値解析を経験することにより，実感を伴って内容を理解 させるとともにコンピューターの活用スキルを伸張させることができた。
〈ものづくり学習＞
過去 4 年間にわたり実験を中心とする理科 3 分野（物理，化学，生物）の探究活動を実施 してきたが，今年度は，工学的なものづくり学習の教材を開発した。生徒はチームに分かれ て課題に取り組むことを通じて，試行錯誤を繰り返し P D C A サイクルを回しながら，問題 を解決する方法を学ぶことができた。また，自由な発想でものづくりに取り組むことによっ て，生徒の主体性な活動を引き出し，意欲を向上させることができた。

なお，今年度も大学教員による講演会を実施した。講演会を通して，課題研究の目的や意義，方法などを理解するとともに，研究に対する意識や意欲を向上させることができた。
5年間にわたって開講した「総合科学」•「課題探究I」では，教科横断学習，物理•化学基礎学習，理科 3 分野の探究学習などにおける様々な教材の開発•授業実践を通じて，生徒 の主体的な学習態度を引き出し，興味•関心の向上につなげることができた。今後はこれら の教材を，通常授業の中で有効に活用していくとともに，新たな教材開発を手がけていきた い。また，2 年次に取り組む「課題研究II」をより充実させるための授業のあり方について も研究していく。（別細様式2－1「（2）成果と課題」にデータ掲載）

開発した理科3分野における探究学習の教材

	物理分野	化学分野	生物分野
1 年次	電気抵抗の測定	様々中和滴定	酵母菌の発酵実験
2 年次	屈折率の測定	結晶構造について（1）	タンパク質の分析
3 年次	風力エネルギー	結晶構造について（2）	バイオエタノールの作成
4 年次	液体の表面張力	結晶構造について（3）	光合成に有効な光

5 年次	ゆっくり，正確に着地す るパラシュート	Vo1ley ball cha11enge	

1． 2 「探究基礎」（第 1 学年普通科• 1 単位）
［1］研究の目的

- ディベート学習を通して，証拠により論証する訓練を行い，論理的思考力を養う。
- 基礎課題研究を通して，主体的に考える態度及び探究スキルを育成する。
- 実験講座（化学分野）を通して，探究活動に必要な実験や観察の技能を育成する。
［2］研究内容•方法•検証
課題研究に取り組むために必要な論理的な思考力や探究スキルの育成方法を研究した。さ らに，普通科における課題研究を充実させるための方法を模索した。ルーブリック等による パフォーマンス評価及びアンケート調査結果をもとに検証を行った。
＜教育課程編成上の位置付け・一般科目との関係＞
第 2 学年の「課題探究」の基礎学習として，論理的な思考力や探究スキルを育成する。平行して全員が一般科目の「化学基礎」を履修しており，後半は理系を志望する生徒に化学の実験とデータ分析方法，テーマ設定方法を習得させる。文系を志望する生徒は「基礎課題研究」を行う。

《「探究基礎」年間計画》
＜ディベート学習＞

月	学習内容	学習目標
4月	$\begin{aligned} & \text { ガイダンス } \\ & \text { ディベートオリエンテーション } \end{aligned}$ 模擬ディベート	- 教科の目的， 1 年間の流れを理解する。 - 証拠による論証の大切さを学ぶ。 - ディベートの流れ，個々の役割を学ぶ。
$\begin{aligned} & \text { 5月 } \\ & \text { 6月 } \\ & 7 \text { 月 } \\ & \text { 9月 } \end{aligned}$	ディベート論題レクチャー ディベート準備（情報検索） （立論下書き）（各パート作成） クラス内練習試合 ディベート大会	- 論題について基本的知識を学ぶ。 - 信頼できる情報の集め方を学ぶ。 - 説得力のある論を組み立てる力を育成する。 - ルーブリックの使用を通して，自己評価能力を身につけ，論を改善する。 －論理的に意見を主張する力を高める。

※今年度は新型コロナウイルス感染拡大の影響で，年間計画通りのディベート学習の実施を断念し，その代替として「ディベート小論文」を実施した。
＜基礎課題研究＞

月	学習内容	学習目標
10 月	－課題の設定，テーマ理解	－担当の教員から提示されたテーマについて基礎課題研究を開始する。
11月	－情報の収集，文献の読解	－研究の進め方，情報•資料取集の仕方，文
1 月	－ポスター作成	献読解の手法を学んだ後，資料•文献の取
2 月	－発表練習－ポスター発表会	り扱い方，及びテーマの見つけ方を学ぶ。
3 月	－振り返り	－ポスターの作成及び発表方法を習得する。

$<$ 実験講座（化学）$>$

月	学習内容	学習目標
10 月	－いろいろな化学反応	－基本的な実験操作を習得し，グラフの書き
11 月	－化学反応の量的関係	方，読み取り方を学習する。
12 月	－中和滴定	－中和滴定の実験操作，モル濃度，希釈，化学反応式での表現を学ぶ。
1 月	- 酸の濃度と味覚の関係について - ポスター作成	－身近な溶液について，味覚と酸度を比較し その関係をまとめる。
2 月	－発表練習	－基本的なポスターの作成方法及び発表方法
3 月	－ポスター発表会	を学ぶ。

［3］成果と課題
ディベート学習では， 3 期目においてこれまでに，「ディベート学習ノート」の改訂，正し い科学的知識に基づいて論じるための論題レクチャーの開始，生徒の意見を反映したルーブリ ックの改訂，クラス内練習試合でのルーブリックを用いた相互評価の実施，4つのディベート の論題全てを文理融合•領域融合型のテーマ設定にするための論題の検討，変更を行ってきた。授業担当の 1 年学年団に加え，ディベート大会本番ではさらに多くの教員が審査員として関わ るという全教員での協力体制も含め，本校でのディベート学習の指導体系は確立したと言え る。

今年度は，国語科担当教員と相談し，ディベートにおいて不可欠な論理的な文章を組み立て る力をつけるための指導を工夫するべく「ディベート学習ノート」を再度改訂し準備を進めて いたが，新型コロナウイルス感染拡大の影響で通常のディベート学習の実施が不可能となり，代わりに「ディベート小論文（紙上ディベート）」を実施した。

「ディベート小論文」は，各自が 4 つのディベート論題のらちの 1 つに対して，肯定もしく は否定の立場で小論文を書き，同じ論題の是•非でペアを組み，互いの小論文を読み，読んだ小論文に対して反論を記入し，相手に返却，さらに反論に対して，どのように再反論をして自分の主張につなげるか記入するという形式で実施し，生徒の論理的な文章を書く力を伸ばすこ とに特化した活動を行った。来年度，ディベート学習をどのような形で実施するべきなのかを今後しっかりと検討していく必要がある。

文系進学希望者による基礎課題研究では，第1学年正副担任の中から国語科2名，地歴•公民科 1 名，保健•体育科 2 名，芸術科 1 名，外国語科 3 名の教員が担当した。はじめに各担当者が研究の大枠を設定し，各グループはその研究の大枠の範囲内で新たな課題を設定し，必要 に応じてさらに情報収集や文献読解，周辺知識の習得等を行いながら研究を深めた。最後にポ スターセッションを行い研究の成果を発表した。基礎課題研究の流れは以下の通りである。

○見直し

理系進学希望者に対しては，化学分野の実験とデータ分析方法を学習させ，探究スキルを育成した。第 1 学年全員が履修する「化学基礎」での履修内容を考慮した実験を体験し，実験の技能や結果の分析方法，考察のポイントを習得させ，第 2 学年での「課題研究」につなげた。

1．3．「プレゼンテーション \＆ディスカッション」（第 1 学年普通科，理数科• 1 単位）
［1］研究の目的
－英語での発表の準備，及び発表を通して，英語の資料収集の方法，科学英語の読解，情報機器を用いた発表の方法を学ぶ。さらに，情報とメディア，情報社会とモラル，デジタル情報と情報の活用について学ぶ。また，第 1 学年に言語能力を育成し，発表のための手法 を学ぶ学校設定科目の設置が有効であることを実証する。
［2］研究内容•方法•検証
情報の取扱い，コンピューターの基本的操作方法を学習し，論理的な説明を英語で行ら能力 を育成する。科学的なトピックについて英語で発表し，発表に対して質疑，討議を行ら機会を与えた。ルーブリックを使用した評価を行うとともに，授業アンケートで成果を検証した。
＜教育課程編成上の位置付け・一般科目との関係〉
一般科目である「英語表現 I 」（第 1 学年）と連動して授業展開する。「英語表現 I 」でテー マ・資料の提示（1人1資料），発表の方法を指導し，「プレゼンテーション\＆ディスカッショ ン」で資料読解，発表準備，発表練習を行う。次に「英語表現I」で発表を行い1 サイクルとす る。年間3サイクル行い，第2学年の「課題探究II」及び「人文科学課題研究I」における英語発表（国内•国外）の基礎とする。

《「プレゼンテーション\＆ディスカッション」年間計画》

月	学習分野	内容
$\begin{aligned} & 4 \text { 月 } \\ & 5 \text { 月 } \\ & 6 \text { 月 } \end{aligned}$	情報とメディア 情報の取扱について 情報機器の操作 英語によるプレゼンテーション（1） （以下「英語表現I」と連動） ＂Presenting Komatsu＂	－コンピューター実習を通して，使用する上 での危険性や問題点について学習する。 －情報検索を通じて，適切な情報の取捨選択 ができるようになる －グループによる英語の発表を通して，プレ ゼンテーションの手法及び，プレゼンテー ションソフトの使用法を学ぶ。
$\begin{gathered} \hline 7 \text { 月 } \\ 10 \text { 月 } \end{gathered}$	英語によるプレゼンテーション（2） ＂Presenting a Scientific Process＂ （1）Water Cycle （2）The Lifecycle of a Star （3）How the Dinosaurs Went Extinct （4）Photosynthesis （5）Earthquake	－表計算ソフトを使用して，統計処理の方法 を学ぶ。 －科学的事象に関する5つのテーマを各グル ープ（ 4 名）に 1 つずつ割り当て，それぞ れが，異なるページを読み，グループで英語のプレゼンテーションにまとめる。
$\begin{aligned} & 11 \text { 月 } \\ & 12 \text { 月 } \end{aligned}$	情報社会と情報モラル 英語によるプレゼンテーション（3） ＂Presenting a Scientific Article＂ （1）AI （2）Sea Urchins （3）Plants in Space （4）Climate Change （5）Sleep	－個人情報保護の必要性と個人の責任につい て理解する。著作権等の知的所有権につい て正しく理解し，望ましい態度を養う。 －最新の自然科学的•社会科学的事象に関す る5つのテーマを各グループ（4名）に1 つずつ割り当て，それぞれが同じ記事を読 み，感想を共有し，グループで英語のプレ ゼンテーションにまとめる。
$\begin{aligned} & 1 \text { 月 } \\ & 2 \text { 月 } \\ & 3 \text { 月 } \end{aligned}$	デジタル情報と情報の活用英語によるプレゼンテーション（4） （個人）	－目的に応じた情報伝達手段を選べるように する。 －情報を適切に取り扱い，分かりやすく発表 をする力を育成してきた 1 年間の集大成 として，各自が選んだテーマで，個人のプ レゼンテーションを英語で行う。

［3］成果と課題
今年度は，昨年実施した生徒アンケートでの生徒の意見や，A L T（外国語指導助手）や英語科教員との話し合いに基づき，生徒の実情から見た目指すべき目標と評価基準が合致するよ うにルーブリックを改訂した。その改訂版ルーブリックを用いて，発表毎に生徒は自己評価を行い，自分に足りない部分を次の発表までに補っていくということができた。また，昨年度ま での生徒アンケートでは「準備時間の確保」が要望として多く出されていたため，今年度は発表の回数を1回減らして3回とし，その分，発表練習を充実させて発表の質を高めることを目指した。その結果，生徒アンケートの「十分な準備や練習ができたか」については，肯定的回答が昨年度 74% から今年度 88% と大きく上昇した。さらに，「ルーブリックが発表準備の参考になったか」という項目では，肯定的回答が昨年度 82% から今年度 93% と大幅な伸びが見 られた。発表練習の充実と，改訂版ルーブリックを用いた自己評価の相乗効果により，今年度 は，質の高い「プレゼンテーション」をするための取り組みという面では，今まで以上に生徒 の気持ちに寄り添った授業を実践することができた。

また， 3 期目では，全担当者共通の授業プリントや，パワーポイントスライドを開発•使用 したり，A L T（外国語指導助手）の協力により作成した科学的テーマに関する英文教材（オ ーセンティックマテリアルを使用）で生徒に英語で科学技術や研究に触れる機会を与えたりす るなど，「プレゼンテーション\＆ディスカッション」の指導体系を確立することができた。

課題としては，「ディスカッションの充実」が挙げられる。昨年度までは生徒の「ディスカ ッション」能力を高めるために「英語表現 I 」の授業との連携で，発表の後に生徒が，テーマ

に関して討論をする機会を増やし，質•量ともにディスカッションの充実を目指してきた。そ の結果「英語で討論する能力がついたかどうか」に関する生徒のアンケート結果において，肯定的回答が一昨年度 71% から昨年度 86% となった。しかし，今年度は新型コロナウイルス感染拡大の影響でディスカッションをする機会を減らさざるを得ず，肯定的回答が減り，生徒の力を十分に伸ばす機会を与えることができなかった。来年度は，授業担当者やALTとより密に相談をしながら，討論の機会を増やしたい。

学校設定科目「プレゼンテーション\＆ディスカッション」＂Presenting a Scientific Article＂ルーブリック

pt	Individual Points			Group Points
s	Delivery	English	Content	Organization／Flow
3	Speaks clearly， smoothly and audibly． Makes an effort to make eye contact with the audience．	Few grammatical mistakes and clear pronunciation in speech．	Uses simple English so that everyone can understand．Slides and speech are logically organized．Content is thorough．	Presentation is well－organized．Smooth transitions from one member to the next．
2	There are some pauses OR no eye contact OR speaking volume is not loud enough，but most of the information can still be understood．	Some grammatical mistakes AND／OR incorrect／unclear pronunciation issues， but mostly understandable．	Uses some difficult words without explaining them but content is mostly understandable OR slightly disorganized OR a little more content is needed．	Though there are one or two disorganized parts， overall，well－organized． One or two rough transitions OR one or two people forget to use transitions．
1	There are many pauses， the speaker speaks too quietly AND doesn＇t make eye contact with the audience．	Grammatical mistakes AND／OR incorrect／unclear pronunciation prevent full understanding．	Most of the English is too difficult for students to understand OR more content is needed AND content is disorganized．	There are many disorganized parts OR no transitions at all．
0	Because of the poor delivery，almost none of the information can be understood．No eye contact．	Because of poor grammar and pronunciation，little of the information can be understood．	Information is not in simple English．Content seems to be severely lacking．Information is very disorganized．	Presentation is extremely disorganized．No transitions．Clear lack of teamwork．
		Scripts contains plagia translation software	m or parts written using for content and English）	

1．4．「課題探究 II」（第 2 学年理数科•2単位）
［1］研究の目的
理数領域のテーマの課題研究を行い，「科学的探究力」を育成する。また，日本語，英語に よる発表の機会を多く設け「表現力」育成を目指す。
［2］研究開発の内容•方法•検証
グループに分かれて課題解決のための調査•実験•考察を行った。また，その成果を，校内•校外において口頭発表，またはポスターセッションで発表（日本語及び英語）した。終了後の生徒の様子やアンケート調査，及び研究内容からその成果を検証した。

［3］学習目標

主体的な研究活動を通して，自然の事物•現象を探究する方法を習得させ，科学的探究力を高める。また，研究成果を創意工夫してまとめ，発表することにより，自己表現力を高める。

	学習内容	学習の目標
学	- 開講式 - テーマ，研究手法について （第1学年の総合科学からの継続，指導教員を交えて班内で議論） - 研究の背景，概要の理解 - 研究内容の明確化 - 実験に必要な器具や薬品の準備 - 計画に基づいて実験や観察 - データの収集，記録の保存 - 第1回中間報告会 （こまつ研究サポートプログラム）	- 興味•関心を明確にし，テーマを練り直す。 - 課題研究の目的，意義，手法を理解し，必要 な情報の収集法を学ぶ。 - 課題研究の 1 年間の流れを把握する。 - 研究目的や内容を理解する。 - 実験計画の手法や，必要な機材の入手法，操作法研究の進め方，記録，実験の方法を学ぶ。 - 班内で討議し，研究を深める手法を学ぶ。 - データのまとめ方及び説明の方法を学ぶ。 - 大学の先生方を招いて，現在の進捗状況を説明し，助言を頂き，研究の計画を練る。
二 学 期	－講義 「プレゼンテーション \＆ス ライド作成講座」 －第 2 回中間報告会 （こまつ研究サポートプログラム） - 研究の整理 - 内容を深めるために研究の継続 - 大学教員による研究方法の指導 - 研究結果の分析・まとめ - 発表要旨の作成 - プレゼンテーションの準備 - 短時間で伝えるための発表の練習 - 客観的な評価に基づくスライドの修正 - 校内発表会及びその運営 - 講義「ポスター作成講座」 - 発表用ポスター作成 - 石川県S S H 生徒研究発表会参加 - 英語版スライド作成（韓国とのオ ンラインによる科学交流用）	－効果的なプレゼンテーションを行らためのス ライド作成のポイントを理解する。 - 研究の姿勢を学ぶ。 - 繰り返しデータをとることで，再現性を確認 する。 －統計処理も含めた分析と考察を行い，研究成果をまとめる。 - 効果的な発表の仕方，手法を学ぶ。 - 客観的な評価を聴き，より効果的なプレゼン テーションの方法を考える。 - 発表会の運営方法を学ぶ。 - 大学の先生方を招いて，現在の進捗状況を説明し，助言を頂き，今後の研究の方針につい て話し合う。 - ポスターの作成方法と発表方法を学ぶ。 - 他校の発表から研究の着眼点，進め方，発表方法を学ぶ。 －専門用語を正確に英語で表現する。繰り返し練習して，英語で発表できるようにする。
三 学 期	- 講義「論文作成講座」 - 論文作成（研究内容を形式の整っ た論文の形に再度まとめる） - 校内ポスター発表会 - 口頭発表会用のスライドの英訳 - 英語による課題研究発表会（発表 の練習）	- 論文作成のルールと効果的な作成手法を学ぶ。 - 大学の先生から科学論文の意義について学ぶ。 - ポスター発表を通して，双方向の意見交換に よるコミュニケーションを行う。 - 英語での表現の手法，発表の仕方を学ぶ。 - 専門用語を正確に英語で表現する。 - 英語で発表ができるよう練習する。 - 英語発表会を開き，A L T や友人の前で発表 する。また，英語の質問に英語で答える。

［4］成果と課題
4，5月の休校期間中に Google Classroom を使って担当教員と各班員で打ち合わせを何度 か行い，テーマの方向性を確認しあった。例年よりも1 カ月遅れではあったが，研究テーマを設定し，研究を始めることができた。

今年度も 1 人 1 冊研究ノートを持ち，研究論文も 1 人 1 本作成することとした。研究ノート は担当教員が定期的に集め点検した。アンケートの結果，「研究ノートを活用している」と答 えた生徒が昨年度 85.2% から今年度 91.7% へらに増加した。これは，研究を行ら期間が短い ことを踏まえて，常に発表に備えることができるように各担当の先生方が丁寧に指導した結果 であると思われる。

アンケートによると「積極的に参加できたか」の項目のみ，4段階の最上評価である「肯定」 と答えた生徒はやや減少したが，全員が「肯定」または「やや肯定」と回答している。いずれ のアンケート項目においても「肯定」の値は過去5年間の中で最も高かった。これは，今年度研究活動が 6 月からスタートしたため，研究の期間が短く，大学の先生方や担当教員の指導が例年よりも手厚く入ったためであると思われる。その結果，研究に対してつらさや苦しさを感 じた生徒が少なかったのではないかと考えられる。（学校設定科目評価表「課題探究II」参照）

今年度はポスター発表の様子を録画し，発表会が動画による視聴であったため，十分なポス ターセッションができなかった。よって，アンケートの調査から，石川県S S H 生徒研究発表会のポスター発表会に対する評価では「満足」と答えた生徒の割合が 5 ポイント減少した。ま た，ポスター発表会によってプレゼンテーション能力の向上に有効であると答えた生徒が例年 よりも8ポイント減少した。次年度はポスター発表動画を作成するだけではなく，例年行って いた時期にポスターセッションを行えるように工夫したい。

○こまつ研究サポートプログラム

課題研究に対する大学•企業からの指導助言を受けるために，「こまつ研究サポートプログラム」 の中で，大学•企業による支援体制の整備に取り組んだ。本校教員による指導に加えて，専門的 な知識を持つ各連携先の「こまつ研究サポーター」に依頼して，タイミング良く適切な指導やア ドバイスを得ている。今年度は2回にわたり大学の先生方に来校してもらい報告会を実施し，年間を通じてグループ毎に随時丁寧な指導を受けた。また，校内ポスター発表会では，大学の先生方だけではなく，大学院生にも参加してもらい報告会を実施し，年間を通じてグループ毎に随時指導を受けた。（次ページルーブリック参照）

こまつ研究サポートプログラム概念図

＜学校設定科目「課題探究II」中間報告会（こまつ研究サポートプログラム）ルーブリック＞

	評価観点	4	3	2	1
1	$\begin{aligned} & \text { テーマ選 } \\ & \text { 定 } \end{aligned}$	独創的で実現可能なテーマが設定されている。テーマにつ いての仮説や調査項目が分 かりやすく示されている。	実現可能なテーマが設定され ている。テーマについての仮説や調査項目が示されてい る。	テーマは設定されているが，仮説や調査項目が分かりにく い。	テーマがはっきりしな い。調査項目，仮説が示されていない。
2	研究方法	目的とテーマに沿った研究方法を用いており，さらに最適な方法を検討している。	目的とテーマに沿った研究方法を用いている。	研究方法が示されているが，目的とテーマに沿っていない。	研究方法が示されてい ない。
3	分析	研究結果で得られた情報を適切にまとめ，データの意味をよ く吟味し，様々な観点から検討している。	研究で得られた情報をまと め，データの意味を吟味し，何 らかの法則性を検討してい る。	研究で得られた情報をまとめ ることができている。	研究した内容をまとめら れていない。
4	結論	研究から明らかになったこと について整理し，自然科学な どの知識を用いて，論理的に説明している。	研究から明らかになったこと について整理し，自然科学な どの知識を用いて，説明して いる。	研究から明らかになったこと について記述はできている。	研究から明らかになっ たことについて記述が ない。
5	内容	内容を十分に理解したプレゼ ンテーションで，すべての質問 に詳細かつ論理的に回答でき る。	内容を十分に理解したプレゼ ンテーションで，すべての質問 に回答できるが，詳細にという わけではない。	内容を十分に理解していない プレゼンテーションおよび質問 への回答となった。	内容が理解できていな い。中には誤解もある。 また，質問にも正確に答えられない。
6	構成•図表等	内容は論理的かつわかりや すい順序で提示されている。図表等は発表内容の説明に役立ち，効果的なものになっ ている。	内容は論理的な順序で提示さ れている。図表等は，発表内容と関連したものになってい る。	プレゼンテーションには飛躍 があり，内容をたどるのは困難である。図表等は非常に少 ない。あるいは発表内容との関連が薄い。	論理的な順序で組み立 てられていない。図表等 は使われていない。あ るいは過剰である。
7	$\begin{aligned} & \text { 話し方• } \\ & \text { アイヨンタ } \\ & \text { クト } \end{aligned}$	話し方にメリハリ（声の強弱や抑揚など）があり，容易に理解 できる。原稿をほぼ見ることな く，つねに聴衆を見て的確に伝えている。	はつきりと話し，容易に理解で きる。原稿はほぼ見ることは ないが，スクリーンの方ばかり を見て，聴衆を見ていない。	話し声が小さい。あるいは速 すぎて容易に理解できない。原稿を読むことが多く，聴衆を見ていない。	話し方が不明瞭で，聞 き取れない部分ある。 あるいは速すぎるため まったく理解できない。 ずっと原稿を読んでい る。

1．5．「課題探究」（第2学年普通科普通コース・1単位）

［1］研究の目的

課題研究への取り組みを通して，知識を活用して課題を解決する能力とともに，主体的な学習態度を養う。また，ポスター発表を通して，表現力を育成する。
［2］研究内容•方法•検証
第2学年普通科普通コースの生徒が充実した課題研究を効果的に取り組むための指導方法を研究した。1クラスを3名または 4 名の教員が担当（教員 1 人が $3 \sim 15$ 名の生徒を担当）して，課題研究に取り組み，ルーブリック等によるパフォーマンス評価及び生徒，教員に対するアン ケート調査の結果をもとに成果の検証を行った。

《「課題探究」（理系）年間計画》

月	学習内容	学習目標
$\begin{aligned} & 4 \text { 月 } \\ & 6 \text { 月 } \\ & 7 \text { 月 } \end{aligned}$	－実験講座（物理分野•生物分野） ばね定数の測定，木片の密度測定光合成色素の薄層クロマトグラフイー －研究分野希望調査及び班分け	－物理分野，生物分野の基本的な実験に取り組 むことにより，基礎的な実験技能を身につけ る。 －知識を習得し，課題設定の方法を学ぶ。
$\begin{gathered} 9 \text { 月 } \\ 10 \text { 月 } \\ 11 \text { 月 } \end{gathered}$	－探究活動 テーマ設定，情報検索 先行研究調查，実験，観察情報収集，分析，まとめ	- 知識を習得し，課題の設定方法を学ぶ。 - 研究の進め方，実験方法，情報収集の方法， データの記録方法を学ぶ。

12 月	•発表準備及び発表会	・ポスターの作成方法及び発表方法を学ぶ。
1 月	ポスター作成，発表練習	
2 月	ポスター発表会	
3 月	•論文作成 •振り返り	•論文の作成方法を学ぶ。

《「課題探究」（文系）年間計画》

月	学習内容	学習目標

［3］成果と課題
今年度は，理系では 4 クラスの生徒 143 名に対して，数学科教員 4 名，理科教員 8 名，保健体育科教員1名が，教員1名あたり 4 名から15名の生徒を担当した。生徒は数学，物理，化学，生物，体育から希望する研究分野を選択し，分野ごとに最大 3 グループ（1 グループ 3～5名）に分かれ，合計 15 時間程度の探究活動に取り組んだ。昨年度と同様に，研究を開始する前に，基礎知識や実験技術を習得するために，物理分野及び生物分野の実験講座を実施した。週1時間の限られた時間の中で，それぞれのグループが興味のあるテーマについて意欲的に研究活動に取り組んだ。開講4年目となり，多くの教員が課題研究の指導を経験したことにより，少ない時間の中でも目的に沿った探究的な取り組みを実践することができた。

文系では生徒 94 名に対して，外国語科教員 2 名，国語科教員 3 名，地歴公民科教員 2 名，保健体育科教員1名が担当し，教員1名あたり $10 \sim 15$ 名の生徒を担当した。「テーマ発表会」
「中間発表会」で担当教員以外の複数の教員の指導を受け，研究の軌道修正をしながら，「最終発表会」に向けて研究を深めた。

本校S S H 事業のテーマの1つである＂課題研究を中心に据えた全校での 3 年間の学習体系 を確立する＂において普通科の中心的な役割を担うのが「課題探究」である。 4 年間で課題研究の指導体制が構築され，多くの教員が指導に携わるようになったことによって本校生徒の探究力を向上させることにつなげられた。アンケート調査の結果においても，指定1，2年次か ら3年次にかけて評価が向上していることからも，課題研究の指導がある程度軌道に乗り，生徒に身につけさせたい能力の伸張を図る上で効果な科目になってきたことが伺われる。しかし ながら，教員一人あたりの担当グループ数や担当生徒数が多く，実験室，実験設備が不足して

いる状況は改善されていない。全校生徒が充実した課題研究に取り組むための環境整備をして いくことは，次年度以降に解決するべき大きな課題である。

「課題探究」（2 年生理系）生徒アンケート調査の推移

1．6．「人文科学課題研究 I 」（第 2 学年普通科人文科学コース・2単位）
［1］研究の目的
普通科に人文科学コース1クラス（40名）を設け，情報化，グローバル化した国際社会の中で，地域の経済や文化を理解しつつ，積極果敢なチャレンジ精神を持ち，広い視野に立って活躍できる社会のリーダーを育成する。
［2］研究開発の内容•方法
特色ある学校設定科目と教育活動を通して，多元的な視点で物事を考える思考力と探究力を涵養し，確かな学力をつける。地域の教育力を活かして人間力を高める。
《「人文科学課題研究 I 」年間指導計画》

	学習内容	学習の目標
	- 課題研究開講式 - テーマ，研究手法について （指導教員を交えて班内で議論） - 研究の背景，研究内容の理解 - 研究内容の明確化	- 課題研究の 1 年間の流れを把握する。 - 各自の興味•関心を明確にしつつ，班でテー マを設定する。 －課題研究の目的，意義，手法を理解し，必要 な情報の収集法を学ぶ。
期	- 京都大学研究室訪問 - 課題研究中間発表会	－大学での研究について教授や大学院生に学び，本校卒業生との対話を通して意欲を高める。 －中間発表会に大学教授•大学院生を招いて，助言を受け，研究の方向性を確認する。
期	- 研究の進展 - 発表用ポスター作成 - 短時間で伝えるための発表の練習	－中間発表会を踏まえて，研究をより良い方向 に導き，客観的な資料に基づいた研究の深化 を図る。 －効果的なプレゼンテーションを行うためのス ライド作成のポイントを理解する。
	－課題研究プレ発表会	－ 8 グループのらち 1 グループを選抜し，石川県の合同発表会で発表する。

	－海外交流研修（台湾）	－海外の高校生との交流を通して人間的成長を促し，異文化を素直に受け入れ，両国間の文化的差異や共通性を追究し，また自らの郷土 や国家についても深く考える。
三	－課題研究最終発表会	－中間発表会・プレ発表会をふまえてより完成度の高い発表を行う。
期	－英語文献を利用した学習	－研究内容を英語で発表できることを目指して，英語文献を利用する。

［3］成果と課題
生徒自らがテーマを決め，調心゙たことをもとに仮説を立て，考察し，議論して結論を導き出 す活動を週 2 時間実施し，年間 3 回の発表会を行った。 8 月の中間発表会では外部の有識者を招いて助言をしていただいた。12月のプレ発表会ではルーブリックによる評価を行い，併せて石川県合同発表会の代表の選抜も行った。1月の最終発表会では過去 4 年間は，県内の高校•中学校の先生に加えて学校評議員の方々，保護者，加賀地区の高校のALT，さらに近隣中学 の 2 年生も参加した。今年度は新型コロナウイルス感染拡大の対策として，県内の高校•中学校の先生，加賀地区の高校のALTに限定した。今後はさらに地域の企業や教育機関の協力を得て，最終的には地域に成果を還元できるような課題研究を目指していかねばならない。

過去4年間実施してきた海外交流研修の代わりに，今年度は外国人留学生との交流会を実施 した。金沢大学から13名の留学生を招聘し，異文化理解や課題研究の紹介などを行った。

1．7．「人文科学課題研究 II」（第3学年普通科人文科学コース・ 1 単位）
［1］研究の目的
人文科学コース1クラス（40名）の生徒を対象に，「人文科学課題研究I」で身につけた能力をさらに深化させ，英語で資料を読み研究としてまとめる能力を育成する。
［2］研究開発の内容•方法
特色ある学校設定科目と教育活動を通して，多元的な視点で物事を考える思考力と探究力を涵養し，確かな学力をつける。グローバル化した社会で活躍できるようにコミュニケーション能力も充実させる。
《「人文科学課題研究II」年間指導計画》

	学習内容	学習の目標
	•課題研究開講式	•課題研究の 1 年間の流れを把握する。
－	・グループ決定	•各自の興味•関心を明確にしつつ，グループ
学	・プロジェクト	でテーマを設定する。
期	•研究活動	•研究目的や内容を理解する。
	•発表練習	•研究を深める。
	・プレゼンテーション	•効果的な発表を行う。
$二$	•個別研究 •研究活動	• 3 年間の課題研究の総仕上げとして個人の研
学	•発表練習	究を行う。大学での学びを意識しつつ，進学
期	・プレゼンテーション	の動機付けとする。

［3］成果と課題
2 年次では 1 年間で 1 つの課題研究を行ってきたが， 3 年次では短い期間で複数の課題研究 を英語で行った。英語による研究を通して，自らの興味関心の対象を明確にするとともに，自 らの適性を見極めることができた。ALTの協力を得て，英語の調べ学習の域を超えるべく，自己表現活動を重視した。今後はこの内容を普通科にも応用すべく研究を重ねていきたい。

1． 8 「科学探究」（第 3 学年普通科•1単位）
［1］研究の目的
第2学年の「課題探究」で取り組んだ課題研究をふまえて，より発展的な学習内容に取り組 むことにより，科学的探究力，問題解決力をさらに育成させる。また，生徒の自然科学及び社会科学に対する興味関心の向上につながる教科融合•領域融合型学習のための効果的な教材の開発を行う。
［2］研究開発の内容•方法•検証
第2学年までに学習した一般教科（「理科」•「数学」）及び「課題探究」の学習を踏まえて，第3学年普通科普通コースの生徒が教科融合•領域融合型の学習に効果的に取り組むための指導方法を研究した。理系では，探究的•発展的な実験，実習を中心とした授業を通じて，科学的探究力，問題解決力，データ処理能力の育成を図った。生徒が作成するレポート，筆記テス トの結果及び生徒，教員に対するアンケート調査の結果をもとに成果の検証を行った。

「科学探究」年間指導計画

	学習内容	学習の目標
	《物理分野》 実験 CD の溝間隔の測定 実験 金属の比熱測定 《生物分野》 実験 DNAの電気泳動 実験 眼球と脳の解剖	－レーザー光の干渉を用いてC DやD V D の溝間隔 を測定する。また，CDに白色光をあてたときの色づきかたについて考察する。 －熱量計と温度センサーを用いて，金属試料の温度変化を測定することによって，金属の比熱を求め る。実験で生じた誤差の原因や温度の時間変化に ついて考察する。 －ウィルスのDNAを制限酵素で切断し，アガロー スゲル電気泳動によってDNA断片の大きさを分析する。 －眼球と鶏頭の脳を解剖し，構造を理解するととも にそれらの構成成分による性質を考察する。
学	《化学分野》 実験 金属イオンの確認 実験 硫酸と硫化水素 実験 金属イオンの分離	－銀イオン，銅（II）イオン，鉄（II）•鉄（III）イオ ンについて，沈殿の生成や溶解，及び沈殿や溶液 の色の変化等を観察し，それらの金属イオンの性質を知る。 －硫酸の性質を調心゙る。硫化水素と金属イオンの反応について調べる。 －金属イオンの混合溶液からイオンの性質を利用し て各イオンを分離し，確認することによって，定性分析の一般的方法を学ぶ。

［3］成果と課題
今年度は新たに実験教材「CDの溝間隔の測定」を開発した。本実験では，光の干渉を利用 して，身近なCDやD V D の溝間隔を測定する。また，C D に白色光をあてたときに見える色 の配列の仕方を観察して，その理由について考察した。また，実験「金属の比熱測定」では， コンピューターとセンサーを用いて，2 つの物体の温度の時間変化が指数関数で表される様子 を観察した。このような実験を通じて，自然界の様々な現象が数学を用いて表現できることを認識させるとともに，問題解決における数学の重要性を認識させることができた。また，昨年度からレポート作成のための時間を授業時間内で確保することによって，教師がレポート作成 の指導を行い，生徒は時間をかけてじっくりと取り組むことができた。

今年度は，昨年度まで実施してきた大学教員による特別講義は実施できなかった。次年度以降は，先端的な科学研究についての知見を得るとともに，科学に対する興味を高めることにつ ながる機会をつくっていきたい。

「科学探究」では，S S H 指定2期目から開発してきた教材を有効に活用しつつ，新しい教材開発に取り組みながら，領域融合科目としての授業実践に取り組んできた。今後はさらに効果的な教材の開発に継続して取り組むとともに，通常授業の中に適切に位置づけることで，よ り充実した探究的な学びの実現を目指したい。

3 期目で開発した教材

- ばね振り子の周期測定
- クインケ管（音波の干渉）
- CDの溝間隔の測定
- 木片の密度測定
- ヤングの実験（光の干渉）
- 空気抵抗の性質
- D N Aの電気泳動
- 金属の比熱測定
- スーパーボールの反発係数
- 大気圧の測定
- パイプ中を伝わる音速の測定
- 単スリットによる回折
- タンパク質の電気泳動

2．課題研究を充実させるためのフィールドワーク，企業•大学との連携，国際共同研究等

探究活動を充実させるため，第1学年，第2学年において，以下に示すフィールドワーク，企業•大学との連携，国際共同研究を実施した。

2．1．野外実習（第 1 学年理数科全員，普通科希望者）
［1］研究の目的
生物分野と地学分野を中心とした実習を行うことで，実物を間近に見るとともに，直接触れ ることにより観察力を高め，科学的探究力を育成する。また，グループで実験•実習を行うこ とで，協調性等の人間力を育成することを目標とする。さらに，宿泊を伴った継続的実験を行 うことで自主性を育成する。
［2］研究開発の内容•方法•検証
今年度は日帰りのプログラムで，能登の海岸で生物分野の実習を行い，試料の採取，扱い方 の学習を行った。本年度の参加者は理数科のみの 40 名であった。また，別日程で，地学分野 の実習として，能美市の巨大流紋岩の観察と金沢の大桑層で地質調査を行った。参加者は理数科15名であった。

検証は実習中の生徒の観察，実習中の研究内容，終了後のアンケート調査から行った。
［3］成果と課題
〈生物分野〉
－安全面の確保のためにも，事前の下見や施設関係者との打ち合わせ等を入念に行った。今年度は日帰りのプログラムで全員ライフジャケットを着用して，膝までの海水面での海洋生物採集を行った。
－生徒たちが十分海洋生物を採取できなかったことを想定して予め海洋生物を準備しておい た。その結果，準備したものを使用することはなかったが，安心して実習に取り組むこと ができた。
－ウニの人工授精および発生観察は例年よりも発生の過程を観察することができなかったた め，事後研修においてもう一度「理数生物」で発生の過程を観察した。
－生徒のアンケートの顕微鏡操作についての設問に対しては，83\％（5 年間の平均 75% ）と高く自己評価した回答だったことから，生物選択者が多く事前研修が十分に行われたこと によって顕微鏡操作に対して生徒が自信を持てたのではないかと思われる。生徒の自己評価と指導者の評価は一致していると思われる。
－課題としては，アンケートの「グループ内で互いに協力し，実験•実習を円滑に行うこと ができたか。」という設問に対して例年よりも否定的な解答が見られたことである。よって，実習時の班で事前研修を行い，班員との活動に慣れさせるようにしたい。
－事前研修が例年よりも少なかったことにより，積極的に質問をしてくる生徒が多かった。 このことから，事前研修および事後研修の内容と時期を検討し，事前研修でこの実習にお ける課題を発見し，事後研修で考察を行うようなプログラムを考えたい。

〈地学分野〉
－地学実習については悪天候による順延に備えて，予備日を設定した。当日は天候が良く，熱中症に留意して実習を安全に行った。

〈研修の日程〉

	期 日	内 容
事前研修	7 月	- 実習の際に必要な基礎知識の習得 - 安全指導，注意事項
生物実習	7月23日	- 内浦海岸にて海洋生物採集 - のと海洋ふれあいセンターの館内見学
		ウニの人工受精，発生実験•観察
		ウニの発生実験•観察
地学実習	8月22日	和気町巨大流紋岩観察，大桑層にて地質調査
事後研修	8月，9月	レポート作成

2．2．関東サイエンスツアー（第1学年理数科）
［1］事業の目的
－第一線の研究者•技術者等から直接講義や実習指導を受けることで，科学技術に関する興味•関心を高め，主体的に学ぶ意欲を育てる。
－校外行事を通して研究する態度を学ぶとともに，集団生活を通して人間力の向上を図る。
［2］内容
科学への興味•関心を喚起し，科学的探究力を育成するため，サイエンスツアーを理数科39名対象で実施した。今年度は新型コロナウイルス感染拡大の影響を受けて，例年訪問していた関東地方の大学，研究施設での研修は取りやめて，日帰りの日程で地元の金沢大学，石川県立大学での研修に代替した。
［3］成果と課題
今年度は1泊2日のスケジュールで関東地方での研修を実施することができなかったが，地元大学の協力を得ることにより1日のみの日程であったが，充実した研修を行うことが できた。最先端の科学研究に触れ，高校にはない設備や装置を用いた実験に取り組むこと により，生徒の学習意欲および興味，関心を高めることにつなげられた。実施後に行った アンケート調査の結果では，各施設において肯定的な回答（「大変よかつた」，「よかった」） がほぼ 100% で良好な結果であった。

「サイエンスツアー」は，S S H 指定1期目から実施してきた行事であり，15年間にわ たつて充実した内容で継続できたのも，多くの大学，研究施設および本校OBの協力のお かげである。今後も，関係各所と良好な関係を保ちながら，事業を継続していきたい。

〈研修の日程〉（昨年度）

	期	日	内 容
事前研修	6月上旬		予定確認，報告書の作成方法，研修先についての学習
研修当日	9月26日	午前	上野国立科学博物館で研修
		午後	東京大学 研究室研修 （航空工学•天文学•有機化学•生命工学に分かれて研修）
		夜間	研修内容の復習（ワークシート記入），翌日の研修内容の予習
	9月27日	午前	東京工業大学すずかけ台キャンパス（フロンティア材料研究所），理化学研究所に分かれて研修
事後研修	10 月上旬～中旬		報告書原稿作成，研修先に送付

今年度の日程

期 日			内 容
12月21日	午前	$\begin{aligned} & \text { Aグルーフ } \\ & \text { Bグルーフ } \end{aligned}$	石川県立大学での研修 （师ルタイム PCRおよび電気泳動による環境DNA の測定） 金沢大学での研究室見学 - 理学域 数学研究室，物理学研究室，化学研究室 - 工学域 人間適応制御研究室 熱流体•粒子システム研究室
	午後	Aグルーフ Bグルーフ	金沢大学での研究室見学 - 理学域 数学研究室，物理学研究室，化学研究室 - 工学域 ロボティクス・デザイン研究室 ナノ計測工学研究室 石川県立大学での研修 （师ルタイム PCR および電気泳動による環境 DNA の測定）

S S H 指定3期目までに見学を受け入れていただいた大学および研究施設など

- 国立科学博物館
- 東京工業大学フロンティア材料研究所
- 東京工業大学応用理工学院
- 理化学研究所横浜キャンパス
- 海洋開発研究機構横浜研究所
- 日本ゼオン
- 電力中央研究所
- 鹿島技術研究所
- 物質材料研究所
- 東京大学
- 東京工業大学大岡山キャンパス
- 理化学研究所和光キャンパス
- 理化学研究所つくばキャンパス
- 電子航法研究所
- 国立極地研究所
- 原子力技術研究所
- 高エネルギー加速器研究機構
- 日本科学未来館

2．3．大学実験セミナー及び英語発表（第 2 学年理数科）
［1］研究の目的
－大学教員の指導のもとで，2日間にわたって食品微生物に関する実習を行い，様々な食品 （一般食品•発酵食品）の生菌数測定，微生物の検鏡解析，データ分析等を通して，科学的探究力を養う。

- 韓国大田科学高校の生徒も含めたグループ活動を行い，主体的•協働的な学びを実践する。
- 実験，実習のデータ分析から得られた成果を英語の原稿やスライドにまとめ，A L T 及び日本人外国語教員の指導のもとプレゼンテーションを行うことで表現力の育成を図る。
［2］内容
3 期目の 1 年次から 3 年次は，ものづくりの体験に主眼をおいた「橋づくり実験セミナー」 を金沢工業大学との共同企画行ってきたが，4年次の昨年度は初めて「微生物実験セミナー」 を石川県立大学と共同企画し，開催した。本校との共同研究のために来日している 8 名の韓国大田科学高校の生徒と本校生徒とで混合のグループを 4 つ作り，合計 12 グループで活動を行 った。食品微生物に関する実験を行った後，その結果をALT（7名）及び日本人外国語教員 の指導のもと英語で発表した。セミナー全体の説明も英語で行われ，生徒はグループ内でも，宿舎でも，英語でコミュニケーションを行った。

なお，今年度は新型コロナウイルス感染拡大の影響により韓国の来日は中止となり，さらに実験セミナーも石川県立大学での開催ができなくなった。代替行事として，石川県立大学の中谷内先生に来校していただき，本校でアルコールデヒトロゲナーゼ遺伝子に関する実験セミナ ーを1日の日程で行った。
［3］成果と課題
微生物実験セミナーは昨年度初めての開催だったが，内容に関して石川県立大学の先生方と事前に綿密に打ち合わせを行い，本校生徒，韓国生徒が協力し合い，英語でお互いに議論を重 ねながら実験と考察に取り組むことができる，非常にレベルの高いセミナーとなった。本校生徒は，韓国生徒の高い英語力と，豊かな創造性に大いに刺激を受けていた。また，韓国生徒か らは大変勉強になったという声が聞かれた。初開催であったため，事前学習は専門用語の確認 のみとなり，十分ではなかった。そのため，英語のプレゼンテーションでは，個人の英語力に より大きな差が生まれてしまった。残念ながら今年度は開催できなかったが，来年度も石川県立大学の先生方と事前に話し合いの機会を多く設け，内容をしつかりと練り上げていきたい。 また，より実践的な事前学習ができるように企画し，生徒が専門的な表現を自由に使えるよう指導したい。

2．4．韓国との共同研究•合同合宿（第2学年理数科）
［1］事業の目的
韓国大田科学高校生徒との共同研究，英語による発表や意見交換を通して国際性，自己表現力や英語による研究能力を育成する。
［2］内容
7 月に韓国大田科学高校の生徒が来日し，共同研究のための合宿を行う。その後，メール等 によるデータ交換を行い，本校生徒の韓国訪問時の発表に向けて，両国で研究を進める。今年度は，ZOOM を通してオンラインでの実施となった。

3 期目では，これまでに以下のテーマに関して研究を行った。
＜平成28年度＞
（A）Prevent eggplant＇s skin from getting discolored when we pickle eggplants
「ぬか漬けによるナスの皮の変色を防ぐ」
（B）Relationship of air pressure and the coefficient of rebound of the ball
「ボールの空気圧と反発係数の関係」
＜平成29年度＞
（A）The Comparison of Korean and Japanese Ships and the Study of the Optimized Ship Model

「日本と韓国の伝統的な船の形の比較と，その最適化された形の考察」
（B）The Study of Sturdy Modern Architecture Design through the Investigation of Pillars of Traditional Architecture

「伝統的建築物の支柱と，現代的建築物への応用について」
$<$ 平成 30 年度 $>$
（A）Exploring the Most Effective Wave Dissipating Block in Heaving Seas
「波打つ海における最も効果的な波消しブロックの探究」
（B）Exploring Energy Harvesting Technology，Using the Static Electricity of Rain
「雨の静電気を用いた環境発電の技術の探究」
＜令和元年度＞
（A）Effects of the Paper Properties on the Traditional Painting in Korea and Japan ：Focusing on Korean Hanji and Japanese Hwaji

「韓紙と和紙の特性の違いが両国の伝統的絵画に与えた影響」
（B）Study on Optimum Noodle Cooking Techniques
「麺の弾性に影響を与える様々な要因の研究」
＜令和 2 年度＞
（A）Study of Advanced Tea Leaf Paradox
「ティーリーフパラドックスの発展的研究」
（B）Reducing Histamine Using Glycine
「グリシンを用いてヒスタミンを減少させる研究」
［3］成果と課題
3 期目の共同研究では，1，2年次には本校の生徒にとって，韓国の生徒が英語で話してい る内容を理解し，英語で意見を出すことが難しく，コミュニケーションが停滞してしまう場面 がよく見られたが，一昨年度，昨年度は韓国生徒から提示された研究テーマについて，共同研究班の生徒で合同合宿前に十分に話し合い，情報収集を行った。そのため，合同合宿当日には，韓国生徒による英語での説明に対してもしつかりと対応し，その場で即興的に質問をしたり，自分たちの意見を述べたり，アドバイスをしたりすることができていた。さらに昨年度は，共同研究の話し合いのみならず，各自が自分の課題研究の内容について英語で説明し，韓国の生徒から質問や助言を受けることもできていた。大変白熱したやりとりが制限時間を超えても続 き，科学を通して友情を築くことにつながった。これまで培ったノウハウを生かしつつ，新し い内容も取り入れ，さらに充実した交流にしていくことが今後の課題である。

なお，今年度はZOOMを通してのオンラインでの交流となり，発表会本番の前に 2 回，ZOOM によるミーティングを行い，共同研究を進めることができた。課題としては，本校の Wi－fi 接続が不安定で，自信をもって交流に臨むことができないことや，対面交流ではないことによる コミュニケーションの難しさなどが挙げられる。今年度得た知識と経験を生かしながら，来年度の交流に向けて内容の改善をしていきたい。

2．5．韓国での科学研修と科学交流•研究発表（第 2 学年理数科）
［1］事業の目的
学校設定科目「課題探究 II」で取り組んだ研究内容を英語でプレゼンテーションをしたり，韓国の生徒の研究を聞いて英語で質疑，討論をしたりすることにより表現力を高める。また，韓国の高校生との交流の中で様々な刺激を受けながら，英語を通した科学交流により，英語に よる研究能力を高める。
［2］内容
3 期目の 2 年次より，日本•韓国・ロシアの 3 力国の生徒が参加するポスタープレゼンテー ション（DSHS International Science Fair）を行っている。一昨年度は，日本と韓国の共同研究 のポスターが 2 枚，韓国の生徒によるポスターが 34 枚（アメリカの Kansas Academy of Math and Science と韓国の共同研究 2 枚，ロシアの航空宇宙中等教育学校と韓国の共同研究 2 枚を含む），日本の生徒によるポスターが 4 枚（らち 1 枚は学校と S S H の紹介），ロシアの航空宇

宙中等教育学校の生徒によるポスターが 4 枚，計 44 枚のポスターを発表会場（体育館）に設置し，各ポスターの前では，説明に引き続き，活発な質疑応答が行われた。
＜研修の日程＞（昨年度）

1	12月15日	小松空港 \rightarrow ソウル仁川国際空港 \rightarrow 大田科学高校打合せ 大田泊
2	16 日	大田科学高校にて科学交流 －ポスタープレゼンテーション （本校生徒による学校•S S H 活動の紹介／本校生徒による課題研究発表／両校共同研究発表／韓国の生徒による科学研究発表／発表に関 して質疑•討論） －施設見学 昼食後，近隣施設見学（大田科学高校の生徒と共に） （1）韓国先端科学技術大学（K A I S T） （2）韓国電子通信研究院（E T R I ） 大田泊
3	17 日	K T X 利用によりソウルへ移動 国立果州科学館見学（グループ別自主研修）ソウル泊
4	18 日	ホテル \rightarrow ソウル仁川国際空港 \rightarrow 小松空港 \rightarrow 学校着

今年度は，新型コロナウイルス感染拡大の影響で訪韓ができず，代替としてオンラインによ る科学交流を行った。
＜大田科学高校との ZOOM 科学交流の日程＞（今年度）

第1回	9 月 28 日	第1回 共同研究
第2回	10 月 28 日	第2回 共同研究
第3回	12 月 4 日	共同研究•課題研究発表会

《課題研究発表（本校生徒）》
The Physical Measurements of Water Condensation and the Prevention Method
「結露量の物理的手法を用いた測定と防止法の研究」

The Adhesion of Starch Glue

「天然素材を使った接着剤の研究」
《共同研究発表（上記•大田科学高校生徒）》

Study of Advanced Tea Leaf Paradox
 Reducing Histamine Using Glycine

［3］成果と課題
昨年度の日韓の科学交流（ポスター発表会）では，共同研究班，課題研究班ともに十分に事前の準備をして参加することができた。そのため，発表原稿を全く読むことなく，聞き手の方 をしっかりと見ながら説明できていた。さらに，一昨年度の反省を生かし，想定問答集の作成 や，英語の質問をする際の型の練習も行ったので，例年以上に積極的に質問•応答ができてい た。今年度は残念ながら対面での交流はできなかったが，さらに質問をする力をさらに高めて いくことが，来年度への課題である。

今年度の ZOOM 科学交流では，本校のインターネット環境の整備が不十分で，Wi－fi 接続が できず，携帯電話を用いてテザリングをすることで接続するなどのトラブルに見舞われた。次年度も，お互いの国を訪問する形での対面型の交流はまだ難しいと思われるので，ZOOM 交流 の環境整備が必要である。

3．必要となる教育課程の特例等

【理数科】

第1学年における教科横断型の探究学習を充実させ，課題研究•探究学習の取組の充実を図る ため，学校設定科目を設置し以下の科目を代替する。
－必要となる教育課程の特例とその適用範囲

学科	開設する科目名	単位数	代替科目名	単位数	対象
理数科	$\begin{array}{r} \hline \text { プレゼンテーション\& } \\ \text { ディスカッション } \end{array}$	1	社会と情報	2	第1学年
	総合科学	2	社会と情報	2	第1学年
			保健	1	
			家庭基礎	1	
			総合的な学習（探究）の時間	3	
	課題探究 I	1	社会と情報	2	第1学年
	課題探究 II	2	課題研究	1	第2学年
	課題探究III	1	総合的な学習（探究）の時間	3	第3学年

ア 学校設定科目「プレゼンテーション\＆ディスカッション」，「総合科学」，「課題探究 I • II • III」には以下の内容等が含まれており，「社会と情報」 2 単位分を代替する。

- 情報の活用と表現（情報のディジタル化，情報の表現と伝達）
- 情報通信ネットワークの活用とコミュニケーション
- 情報社会の課題と情報モラル，情報化が社会に及ぼす影響と課題，情報社会におけ る法と個人の責任
－望ましい情報社会の構築（情報システムと人間，情報社会における問題の解決）
イ 学校設定科目「総合科学」には以下の内容等が含まれており，「保健」1単位分を代替する。
－健康の考え方，健康の保持増進と疾病の予防，薬物に関する基礎知識等
ウ 学校設定科目「総合科学」には以下の内容等が含まれており，「家庭基礎」1単位分を代替す る。
－生活の自立及び消費と環境（食事と健康，被服管理と着装，住居と住環境等）
工 学校設定科目「課題探究 I •II•III」には以下の内容等が含まれており，「課題研究」 1 単位分を代替する。
- 特定の自然の事物，現象に関する研究 •自然環境の調査に基づく研究
- 科学や数学を発展させた原理•法則に関する研究

オ 学校設定科目「総合科学」「課題探究 I •II•III」には以下の内容等が含まれており，「総合的な学習（探究）の時間」 3 単位分を代替する。

- 自ら課題を見つけ，学び，主体的に判断し，問題を解決する能力の育成
- 問題の解決や探究活動に主体的，創造的，協働的に取り組む態度の育成

－教育課程の特例に該当しない教育課程の変更

○開設する学校設定科目
ア「スーパー理数数学」（3単位）
「理数数学 I 」，「理数数学 II 」の内容の概念，原理，法則などについての理解を深め，論理的思考力と表現力の育成を図る。

イ「理数物理探究」（4単位）
「理数物理」の発展的学習として，特に力学と電磁気学についてより深く考察し，さらなる思考力を育成する。
ウ「理数生物探究」（4単位）
「理数生物」の発展的学習として，特に生物現象と物質，生物の分類と進化，生物の集団に ついて，最新の生命科学技術等についても触れながら，思考力を育成する。

【普通科】

課題研究•探究学習の取組の充実を図るとともに，情報機器を活用した実際的な活動を通して，課題研究に必要な情報の取扱い方や，表現方法を学習するため，学校設定科目を設置し，以下の科目を代替する。
－必要となる教育課程の特例とその適用範囲

学科・コース	開設する科目名	単位数	代替科目名	単位数	対象
普通科 普通コース 理系•文系	プレゼンテーション\＆ ディスカッション	1	社会と情報	1	第1学年
	探究基礎	1	社会と情報	1	第1学年
			総合的な学習（探究）の時間	1	
	課題探究 科学探究	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	総合的な学習（探究）の時間	2	第2学年第 3 学年
普通科人文科学 コース	$\begin{aligned} & \text { プレゼンテーション \& } \\ & \text { ディスカッション } \end{aligned}$	1	社会と情報	1	第1学年
	探究基礎	1	社会と情報	1	第1学年
			総合的な学習（探究）の時間	1	
	人文科学課題研究 I人文科学課題研究 II	2	総合的な学習（探究）の時間	2	第2学年第 3 学年

ア 学校設定科目「プレゼンテーション\＆ディスカッション」，「探究基礎」には以下の内容等が含まれており，「社会と情報」 1 単位分を代替する。

○情報の活用と表現

- 情報社会の課題と情報モラル
- 情報化が社会に及ぼす影響と課題 •情報社会における法と個人の責任 ○望ましい情報社会の構築
- 情報システムと人間
- 情報社会における問題の解決

イ 学校設定科目「探究基礎」，「課題探究」（人文科学課題研究 I •II），「科学探究」には以下の内容等が含まれており，「総合的な学習（探究）の時間」 3 単位分を代替する。 －自ら課題を見つけ，学び，主体的に判断し，よりよく問題を解決する能力の育成 ○問題の解決や探究活動に主体的，創造的，協働的に取り組む態度の育成

－教育課程の特例に該当しない教育課程の変更

○開設する学校設定科目
国語 「国語探究」 地歴公民「世界史探究」「公民探究」
数学 「数学探究 I 」「数学探究II」「数学探究III」「数学探究IV」「数学探究 α 」「数学探究 β 」
理科 「生物探究」「地学探究」
外国語 「ランゲージアーツ」

【仮説（2】】第3学年において科目融合，領域融合型の学習を行うことによって，実社会における現実的な問題に取り組を「探究力」を育成することができる。

第3学年において，理数科，普通科のそれぞれに対して数理融合の学校設定科目「課題探究 III」（第 3 学年理数科•1単位），「科学探究」（第 3 学年普通科普通コース・ 1 単位）及び「人文科学研究 II」（第3学年普通科人文科学コース・1単位）の教材開発を行う。

また，第1学年の学校設定科目「探究基礎」においても領域融合学習を行うとともに，通常科目における領域融合学習も研究開発する。

1．「課題探究III」（第3学年理数科•1単位）

［1］研究の目的

科目融合•領域融合型の学習を通じて，科学の様々な分野における知識の理解を深めるとと もに，それらを活用することによって課題を解決する能力を身につける。現実の課題を解決す るプロセスを経験することによって，自然科学に対する興味，関心を高めるとともに，大学で の学びにつなげる。
［2］研究開発の内容•方法•検証
数学•物理コースと生物•化学コースに分かれて，科目融合•領域融合型の学習に取り組 み，ある分野の知識•技能を他の分野に活用する手法を学ぶ。基礎事項を学んだ後に学んだ手法を活かしたグループごとの探究活動に取り組む。生徒が作成するレポートの内容及び探究力を測定する筆記テストの結果からその成果を検証する。
＜教育課程編成上の位置付け・一般科目•教科との関係＞
第 2 学年までに学習した「理数理科」•「理数数学」及び課題探究の学習を踏まえ，第3学年において教科融合•領域融合型の学習に取り組み，大学での学びにつなげる。

令和 2 年度「課題探究III」年間計画

	学習分野	内容
一期	－ガイダンス	科目の概要説明 1年間の流れ －回転運動する水面の形状（オンデマンド） （1）微分方程式の基礎 - 微分方程式とは何か - 微分方程式の解法（変数分離微分方程式，線形1階微分方程式，線形 2 階微分方程式） －演習
二 期	数学ー物理コース －数学•物理 領域融合型の学習 生物—化学コース －生物•化学領域融合型の学習	（2）微分方程式による数式モデル 微分方程式で表された数式モデルを作ることにより，測結果を予測したり説明したりする方法を学ぶ。 - 水流に関するトリチェリの法則 - 空気抵抗を受ける物体の落下運動 - ニュートンの冷却法則 （3）化学の手法を用いて生物で扱う様々な現象を深く学ぶ。 －酵素カタラーゼを含むドライイーストを用いて過酸化水素を分解し，その反応速度を定量化する。 －微分方程式よりアレニウスの式を導き，酵素反応の活性化エネルギーを求め，無機触媒と比較する。

［3］成果と課題

開講3年目となる「課題探究III」では，3年生理数科の生徒が数学•物理コースもしくは生物•化学コースを選択し，科目融合•領域融合型の学習に取り組んだ。いずれのコースにおいても，微分方程式の解法を学び，具体的な事例を扱いながら基礎的な知識，技能を習得した後，グループご とに探究活動に取り組むというスタイルをとつている。

数学•物理コースでは，いくつかの物理現象についての数学モデルを作成し，数学の知識を活用 することによって課題を解決する能力を身につけることを目指した。今年度は，微分方程式の基礎 を学んだ後，様々な微分方程式の解法を習得した。その後，実際の物理現象（容器の孔からから流出する液体の減り方，空気抵抗を受ける落下物体の速度変化，冷却するときの温度変化）について，微分方程式で表された数学モデルを作成する方法を学んだ。さらに，数学モデルから計算した解を実験結果と比較して考察を行った。このような取り組みを通じて，課題を解決するための数学の重要性や数学を活用することの面白さを実感することができた。

生物•化学コースでは，生物を題材として，生命現象を化学的，数学的に考察することを目的と した。また，生徒達は生命現象を実験し，考察するためには化学•数学の知識が不可欠であること を実感することができた。

「課題探究III」では，科目融合型の学習教材の開発と，それらを有効活用した効果的な授業の実践を目指してきた。学習内容は高校 3 年生の段階としてはやや難易度が高いものであったが，生徒 は積極的に授業に参加し，モデリングや実験活動に取り組んだ。習得した知識を活用した課題解決 のプロセスを経験することにより，発展的な学習に対する意欲や自然科学に対する興味，関心を高 めることができた。3年間の生徒アンケートの調査において多くの項目で結果が向上していること からも，多くの生徒にとつて満足度の高い有意義な授業になったと思われる。一方，質問項目のう ち＂知識や技術を活用して課題解決力がついたか＂については，今年度の結果が前年度よりもやや低くなった。これは，授業時数が十分に確保できなかつたことが要因の一つとして考えられる。次年度以降は，さらに生徒にとつて魅力的で探究力を伸張する上で効果的な教材の開発を実践してい きたい。

課題探究IIIレポート評価用ルーブリック
数学•物理コース

観点	すごい	よい	まだまだ
数学モ デルの 作成 50\％	口現実の問題を数学の問題に書き換えることにより，微分方程式で表された適切な数学モ デルを作成している。 \square 適切な数学の解法を用い て，微分方程式の解を求めて いる。	\square 問題についての数学モデルを作成しているが，それを構成する変数についての仮定や相互関係に不正確なところがある。 \square 微分方程式の解を求めている が，不正確である。	\square 問題についての数学モデルを作成していないか，作成していて も全く的外れなものになってい る。 \square 微分方程式の解を求められて いない。
実験に よる検 証 50\％	モモデルから得られた解を検証するための適切な実験を行 い，その実験方法及び結果を正確にわかりやすく記述してい る。 \square 実験結果と計算結果を比較 し，誤差の原因やモデルの修正などについての深い考察を行っている。	■モデルから得られた解を検証 するための実験を行い，その実験方法及び結果を記述している が，不適切なところがある。 \square 実験結果と計算結果を比較 し，誤差の原因などについて考察を行っているが，不十分であ る。	ロモデルから得られた解を検証 するための適切な実験を行って いない。 \square 実験結果と計算結果を比較 し，誤差の原因などについて考察を行っていないか，著しく不十分である。
\checkmark の数	A	B	C
得点	$3 \times A+2 \times B+1 \times C$		

生物•化学コース

観点	すごい	よい	まだまだ
レポート の構成• 誤字脱 字，内 容理解	\square 目的，方法，結果，考察，結論の形で構成されており，よ くまとまっている。 \square 誤字や脱字，文法の上の間違いがまったくあるいはほと んどない。	\square 目的，方法，結果，考察，結論の形で構成されている。 誤字や脱字，文法の上の間違いが5つ未満である。	\square 目的，方法，結果，考察，結論の形で構成されておらず，まと まりがない。 \square 諤字や脱字，文法の上の間違いが 5 つ以上ある。
目的•手 法•図， 表•分 析，考 察	\square 研究の目的がその意義とと もに明確に述べられている。 \square 得られた結果を適切かつ効果的な図•表で表している。 \square 得られた結果を妥当かつ論理的に分析し，深い考察を行っている。	\square 研究の目的が明確に述べら れている。 \square 結果を表す図•表が少なか ったり，十分に効果的なものにな っていない。 \square 概ね妥当な分析をしている が，改善の余地があり，考察も不十分である。	\square 研究の目的があいまいであ るか，述べられていない。 －結果を図•表で表していない か，あっても不適切なものになっ ている。 ほとんど意味のない分析や考察になっているか，またはして いない。
\checkmark の数	A	B	C
得点	$3 \times \mathrm{A}+2 \times \mathrm{B}+1 \times \mathrm{C}$		

生徒アンケートの調査結果

課題探究IIIのアンケート結果を点数化したグラフ（上：数学•物理コース，下：生物•化学コース）

2．「通常科目」における領域融合の取組

［1］研究の目的

通常科目において，領域融合学習の教材を開発する。さらに，開発した教材を活用した複数教科の教員によるコラボレーション授業の実践により，生徒の興味，関心を高め，主体的，意欲的な学習態度や姿勢を引き出す。
［2］研究内容•方法•検証
今年度は，数学と理科の教員が協力しながら，生徒の数学の活用力を向上させるための数理融合学習の教材開発を行った。物理分野の中から最小作用の原理についてのトピック（光の屈折，最短経路）を選び，数学を活用して現象を解析する教材を開発した。理数科第1学年の「理数数学特論」において授業を実践し，生徒アンケートによる検証を行った。
［3］成果と課題
最小作用の原理に関する教材では，微分を用いて解析するのがオーソドックスな方法である が，今回は第 1 学年段階における数学の履修状況に留意して，図形的な視点で議論を進めるよ らに授業内容を構成した。微分を使う方が，生徒に数学を活用する意識を高められると思われ たが，授業に対する生徒の反応は概ね良好であり，意欲的に課題に取り組んでいた。授業に講義，グループワークおよび実験をコンパクトに組み込むことにより，主体的な学習姿勢を引き出すことができたと考えられる。（P．11（2）2「通常科目」における領域融合の取組にデータ揭載）
融合科目における教材は，複数教科の教員が協働して作り上げていく必要がある。また，担当教員は適切な教材をつくるために，適切なテーマの選定を行らことや，専門領域外の内容に ついて理解していることも要求される。そのためには，教員の研修機会や教材研究のための十分な時間の確保が欠かせない。次年度以降は，S S H 事業の効率化を図りながら，物理と数学 の融合だけでなく，さらに多くの効果的な教材開発に取り組んでいきたい。

3．「探究基礎」における領域融合の取組

［1］研究の目的
第1学年の学校設定科目「探究基礎」のディベート学習において文理融合，領域融合的なテ ーマを扱い，領域融合型学習の基礎とする。その有効性と指導のあり方について検証する。
［2］研究内容•方法•検証
従来の教科を越えた課題に関して，主体的に取り組む姿勢を育成するために，「探究基礎」の ディベートにおいて，文理融合，領域融合的な調査，考察を必要とするテーマを選び，その定義とプランを提示する。一昨年度より，4つのテーマ全てを文理融合，領域融合的なテーマに している。
各テーマに関して，「ディベート論題レクチャー」において理科の教員が科学的な説明を，地歴公民科•外国語科の教員が社会科学的な説明を行ら。生徒は「ディベート学習ノート」にレ クチャーの内容をまとめ，その知識に基づいてデータを集めて，ディベートの準備を進める。
今年度は通常のディベート学習の代替として「ディベート小論文」を実施したが，論題に関 しては昨年度と同じ 4 つの文理融合，領域融合的な論題を採用した。
［3］成果と課題
3 期目の 1 年次には，インターネット上の誤った情報に基づいて論を組み立てる生徒が多く見られたが，2年次より生徒と授業担当者（1年正副担任）全員が共通理解をもつてディベー トの準備を始めることができるように，「ディベート論題レクチャー」を開始した。それによっ

て，テーマに関して押さえておくべき前提となる知識を提供することが可能となった。今年度は，課題となつている論理的で説得力のある文章の組み立て方の指導を強化すべく，国語科授業担当と協力し準備を進めていたが，新型コロナウイルス感染拡大の影響で実施できなかつ た。次年度は，それぞれの論題のメリットとデメリットを多角的に考察し，論じる力を育成し たい。
（3）生徒の自己評価能力を育成し，生徒自身が探究活動に生かせる評価方法の研究開発

【仮説（3】パフォーマンス評価を充実させることにより，生徒の自己評価能力を育成 し，生徒自身が探究活動に生かすことができる。

1．学校設定科目「探究基礎」のディベート学習における取組

［1］研究の目的
－「探究基礎」のディベート学習においてパフォーマンス評価を充実させ，生徒による相互評価，自己評価を通して，生徒の自己評価能力を育成する。ルーブリックの作成に生徒自身 が関わる際に，どのような形で参加していくのが適切かを検討する。
［2］研究内容
－年度当初に担当教員全員で会議を行い，ディベート用ルーブリックの内容の共通理解を図 る。また，4月のディベートオリエンテーションで生徒にも提示し，到達目標が明確にな るようにする。

- ディベート大会では，教員と生徒がルーブリックを用いて審査と評価を行う。
- ディベート大会 3 週間前のクラス内練習試合において，ルーブリックによる相互評価及び自己評価を行い，生徒による評価活動がその後の活動に生かせるよう指導する。
－アンケート調査の中で，ルーブリックに加えてほしい観点を尋ねることで，一昨年度改訂 したルーブリックが適切なものになっていたかを確認する。
－今年は新型コロナウイルス感染拡大の影響で，通常のディベート学習は中止となり，代わ りに「ディベート小論文」を実施した。その際，ディベート小論文用ルーブリックを作成 し，評価した。
［3］成果と課題
－ 3 期目では， 3 年次に生徒の意見を反映してルーブリックを改訂した。その後の生徒アン ケートには，生徒側から特に新しい観点は示されず，内容として十分である，という評価 で，的確な改訂であったことが分かった。
－今年度はディベート学習が通常の形で運営できなかったが，来年度に実施が可能になれば， クラス内練習試合の開催時期を夏期休業前に設定し，ルーブリックによる相互評価及び自己評価を行い，時間をかけて論やパフォーマンスを改善できるようにしたい。

《学校設定科目「探究基礎」ディベート用ルーブリック》

	論理性•証拠	質疑応答の技術	発表の技術	聞く姿勢	チームワーク
3	論理がー貫しており， 証拠が十分で証拠の 信頼度も高い。	相手の理論を理解 した上で，その論 を十分に脅かす質疑•応答を行って いる。	発言が明瞭で，声も大きく，聞き取りやすい。	相手の論証を真剣に聞 き，十分に理解しよう と努め，相手への尊重 をもって対戦してい る。	全員が等しく積極的に発言し，チーム内で活発に話し合い を行い，全員で協力 している。
2	論理的で証拠の信頼度は高いが，立証する には不十分であった り，個人的な意見であ ったりする。	相手の論理を理解 し，適切な質疑：応答を行ってい る。	発言はおおむね明瞭であった が，一部で聞き取りにくいとこ ろがあった。	相手の論証を聞き，そ の内容を踏まえて誠実 に対戦している。	発言の量に多少偏 りが見られるが，チ ーム内で必要な話し合いを行い，協力し ている。
1	論理的でなかったり，証拠が不十分だった りと，個人的な意見の部分がある。	相手の論理を理解 しようとしている が，議論がかみ合 わず，質疑•応答 が成り立たない。	発言が明瞭でな く，聞き取りにく い。	相手の論証を聞き，不誠実な態度で反応して いる。	一部の班員だけが多く発言しており，一部の班員同士が最低限の話し合いを行っている。
0	論理が破綻しており， 証拠が不適切である。	相手の論理を理解 しようとせず，質問 も適切でない。	聞き取れない，ま たは感情的に発言している。	ディベートに対する意欲が見られず，相手の論証を聞いていない。	誰も発言しようと せず，チーム内の協 カが見られない。

《学校設定科目「探究基礎」ディベート学習ノートより》

リサーチマニュアル

〈情報ソース＞

リサーチのために使う情報ソースには次のようなものが考えられます。

1）書籍 2）図書舘 3）コンピュータ（インターネット）4）専門家（小松高校の先生も可）

「探究基礎」の授業時間は，図書館または情報室で情報検索を行うことになります。その他に本を読む などして，ディベートのテーマについて学習し思考を深めてください。

＜インターネットによる情報収集の注意点＞

書籍による情報収集では，その本の著者が信頼できる人か否かが問題になります。尋問の例の中にも「そ の本の著者の肩書きを教えてください」という質問がありましたね。著者が大学の先生だったり権威のあ る人ならばよいのですが，そうでない場合は信頼度は減り，論は弱くなります。

インターネットで情報収集する場合も同じです。そのウェブサイトが信頼するに足るものか否か，また その記事や論評を書いた人が信頼するに足るか否かで論の強さが決まります。たとえば，ネット百科辞典 や個人的なブログは証拠としてはほとんど無効です。情報検索をする上で以下の点を常に心がけましょう。
証拠の信頼度 その証拠・データの出どころはどこか
その証拠（出どころ）は信頼に足るか

信頼できるもの 信頼できる刊行物のデータ（政府•官公庁•国際機関等の刊行物）
信頼できる研究機関のデータ（大学，政府，大企業の研究所等）
権威ある研究者や人物の発言•著書（大学の先生や企業の研究者等）

＜客観的な数値の重要性＞

客観的な数値（特に統計的な数値）は特に大切です。なるべく客観的な数値のデータを引用し強い立論をつくり
ましょう。また，調べたデータについては，グラプや表にして大きな紙に書き，相手千ームやジャッジに見せなが らティィベートを進めてください。
［1］研究の目的
－「プレゼンテーション\＆ディスカッション」の授業における発表に対して，ルーブリックを活用し，生徒のパフォーマンスの改善及び自己評価能力の育成に対する効果を検証する。
［2］内容

- 今年度，昨年度の生徒アンケートの結果に基づいて，ルーブリックの改訂を行った。
- 年間 3 回行う英語による発表に対して，A L T と日本人外国語教員は，それぞれの発表テ ーマごとに作られたルーブリックを使用して評価を行った。
－発表の度に，生徒がルーブリックを使って自己評価を行い，次の発表に向けての達成目標 が明確になるようにした。
－「プレゼンテーション\＆ディスカッション」担当者だけでなく，ALTを含めた全英語科教員で，内容が適切なものになっているか毎回検討を行った。
［3］成果と課題
－ 3 期目 3 年次より，生徒の自己評価能力の育成を目標に，生徒が発表の後にルーブリック を使って自分の発表を評価するという活動を開始した。生徒アンケートの「ルーブリック が発表の準備をする上で役に立ったか」という項目において，肯定的回答は，自己評価活動導入前の 2 年次に 77% であったのに対して， 3 年次 84% ， 4 年次 82% と好結果で安定 しており，さらに， 5 年次の今年度は肯定的回答が 93% となり，大幅な伸びが見られた。発表練習の充実と，改訂版ルーブリックを用いた自己評価の相乗効果が，この好結果の理由であり，着実に生徒の自己評価能力を育成できるようになってきていると考えられる。

学校設定科目「プレゼンテーション\＆ディスカッション」＂Individual Presentation＂ルーブリック

$\begin{gathered} \hline \mathrm{pt} \\ \mathrm{~s} \end{gathered}$	Individual Points			
	Delivery	English	Content	
			Thoroughness and Organization	Comprehensibility
3	Speaks clearly， smoothly and audibly． Makes an effort to make eye contact with the audience．	Few grammatical mistakes and clear pronunciation in speech．	Researched the topic thoroughly．Slides and speech are logically organized．	Uses simple English and explains concepts clearly so that everyone can understand．
2	There are some pauses OR no eye contact OR speaking volume is not loud enough，but most of the information can still be understood．	Some grammatical mistakes AND／OR incorrect／unclear pronunciation issues， but mostly understandable．	Though some more information seems required，researched the topic well．Though there are one or two disorganized parts， overall，well－organized．	Uses some difficult words without explaining them but content is mostly understandable．
1	There are many pauses， the speaker speaks too quietly AND doesn＇t make eye contact with the audience．	Grammatical mistakes AND／OR incorrect／unclear pronunciation prevent full understanding．	More research， information and explanation seem required．Some slides and content are presented out of logical order．	A lot of the English is too difficult for classmates to understand．
0	Because of the poor delivery，almost none of the information can be understood．No eye	Because of poor grammar and pronunciation，little of the information can be	Content seems to be severely lacking． Information is very disorganized．	The information is not in simple English，making it impossible for other students to understand．
		understood．	OR：Script contains plagiarism or parts written using translation software（ $=0 / 6$ for content）	

3．学校設定科目「課題探究 II」中間報告会（こまつ研究サポートプログラム）における取組

［1］研究の目標
－課題研究の中間の段階で大学教員等によるルーブリック評価を行い，生徒自身が探究活動 に生かせる評価方法の研究開発を行ら。
［2］内容
－学校設定科目「課題探究II」（課題研究）の中間報告会を3回行い，こまつ研究サポート プログラムの先生方（こまつ研究サポーター）を招いて，ルーブリックを用いた評価のフ ィードバックをお願いした。生徒はこまつ研究サポーター先生方の指導•助言を受けて，研究テーマの見直しや研究の方向性を碓立していた。
［3］成果と課題
－第1回，第2回ともに，生徒全員が「中間報告会は研究や発表の改善に有効に活用できた」 と答えており，研究をすすめていく上で有意義な報告会であったと考えられる。
－こまつ研究サポートプログラムとして，大学教員や企業，科学館の先生方を講師として招 くことで，生徒達が気軽に課題研究の内容について電話やメールで質問できるようになっ た。
－今年度の報告会は，新型コロナウイルス感染拡大の影響で，昨年度よりも来ていただく大学教員の人数を絞り込んだが，むしろ各グループの専門の先生と時間をかけて，十分なデ イスカッションを行うことができて，生徒の満足度は高かった。
－毎年，ルーブリックの改訂を行っているが，生徒から「努力の過程」，「試行錯誤の過程」 を評価してほしいという意見があったので，生徒の意見をルーブリックに取り入れて評価 を行った。その結果，発表の時に試行錯誤の過程を取り入れる班がいくつか見られた。
－「7月から9月のルーブリックによる自己評価の結果で自身が成長したと感じられた」と答えた生徒は昨年度 97% で，今年度は 100% であった。これは昨年度の結果から，ルーブ リックの内容を意識させ，ルーブリックの評価表が研究を進めていく指針となることを丁寧に説明した結果であると考えられる。
－ルーブリックによる自己評価能力の育成については，生徒同士の評価では結果に差がほとんどな く，育成できたかどうか評価しにくかった。よって，今後は担当教員が班員を評価することで，生徒 の自己評価能力か育成の客観的な評価を加えたい。

（4）実施の効果とその評価

1．Can－do 形式の質問紙による「科学的探究力」伸長度の調査
研究開発1期目（平成 17 年度）から，4つの力 （「科学的探究力」「人間力」「表現力」「国際性」）に関する調査を，生徒への質問紙を用いて行ってきた。 2 期目からは，運営指導委員会の先生方の指導により，Can－do 形式のより具体的な質問項目を使用し，4つの力を測定してきた。 その結果，右図のように生徒の「探究力」の伸長 が観察された。特に，課題研究に取り組む第2学
年 6 月から第 3 学年 6 月にかけて，顕著な伸びが観察された。
＜使用した質問紙の例＞（運営指導委員の監修によるもの）
（1）自ら課題を発見し科学的に解決する力を身に付ける。「科学的探究力」
（1）科学技術に関するニュースや新聞記事に興味を持ち，調べることができる。
（2）身近な生活の中にある変化を，科学の視点でとらえることができる。
（3）授業やSSH行事（講演，実習など）において，より深く調べたいと考える部分や納得できない部分に気付くことができる。
（4）実験器具の使い方を理解することができる。
（5）実験器具を的確に使いこなすことができる。
（6）疑問を解決するために，その方法を考え取り組むことができる。
⑦ 感想と考察の違いを意識して考察を行うことができる。
（8）自己の研究（実験）成果をまとめることができる。
（略）
（4）国際コミュニケーション能力を身につける。「国際性」
（1）国際社会の出来事（科学的•社会的）に興味•関心を持つことができる。
（2）英語で書かれた簡単な科学的文章を読み，日本語で内容を説明することができる。
（3）英語で書かれた難しい科学的論文（研究論文）を読み，日本語で内容を説明することができる。
（4）英語で書かれた難しい科学的論文（研究論文）を読み，英語で内容を説明することができる。
⑤ A L T や先生の力を借りて，自分で研究した内容を英語で発表することができる。
⑥ A L T や先生の力を借りて，発表の準備をしておけば，英語の質問に答えたり，英語で説明した りできる。
⑦ ALTや先生の力を借りないで，自分で研究した内容を英語で発表することができる。
（8）A L Tや先生の力を借りないで，英語で質問したり，英語の質問に答えたり，英語で説明したり することができる。

2．「探究力」を測定する客観検査の開発とEIの概念を用いた「探究力」の伸長度の測定

3 期目の第1年次から，「探究力」を測定する客観テストの作成を試み，経済協力開発機構 OECD による学習到達度調査PISA の問題を参考にしたり，論理的思考力が要求される問題を数学，理科，英語等の科目に応じて試作したりした。しかし，いずれのテストも各教科•科目の基本的知識を必要としたものに留まり，運営指導委員会から「探究力」一般を測定するには不十分との指摘を受けた。代わりに E I の概念を用いた「探究力」測定の方法を提案され，研究 を開始した。

2．1．E I の概念を用いた「探究力」の伸長の測定

本校のS S H 運営指導委員の國藤進名誉教授の監修により，北陸先端科学技術大学院大学の安達恭史氏の研究を参考に，E I の概念を用いた客観検査の作成を試みた。EI（Emotional Intelligence）とは日本語で「情動知能」や「感情知能」などの用語が当てられている心理学用語であり，近年，社会や職場での注目度が増してきている。社会的成功，業績，社会貢献の鍵

となる能力は I Q（知能指数 Intelligence Quotient）よりも E I にあるといわれている。

I E I（エモーショナル・インテリジェンス）の三要素		
（1）自己対応力	自己洞察	（感情察知•自己効力）
	自己動機付け	（粘り・熱意）
	自己コントロール	（自己決定•自制心•目標追求）
（2）対人対応力	共感性	（喜びの共感•悩みの共感）
	他愛心	（配慮•自発的援助）
	対人コントロール	（人材活用力•人付き合い・協力）
（3）状況対応力	状況洞察	（決断•楽天主義•気配り）
	リーターシップ	（集団指導•危機管理）
	状況コントロール	（機転性•適応性）

本校では専門家の指導のもと，下記の「（4）創造力」を加えて，独自に開発した質問紙を用いて，「自己対応力」「対人対応力」「状況対応力」「創造力」の 4 観点から「探究力」を測定した。

II 創造性
（4）創 造 力 好奇心•野心•自己顕示•自律性•楽観性•独自性固執性•論理性•柔軟性•洞察力•構成力•影響力
$<$ 検査項目＞

1	感情的になった時でも自分がどう感じているかわかっている	
2	今の自分の感情を言葉に表せる	自
3	一度始めたことは最後までやり通したい	己
4	目標達成のためなら苦労も気にならない	対
5	必要に応じて自分一人でものごとを決めることができる	応
6	気に障った時でも声を荒げない	力
7	三日坊主は最低だと思う	
8	相手の喜ぶことをしてあげたくなる	
9	悩んでいる人を見ると声をかけずにはいられない	対
10	相手の嫌がることは口に出せない	人
11	困っている人を見ると，何とかしてあげたくなる	対
12	人の能力を適切に引き出すことができる	応
13	人と親しくなることが苦手ではない	力
14	だれにでも進んで手を貸してあげられる	
15	ここぞという時にはきちんと発言する	
16	何かを始めるときは，らまくいくだろうと思ら	状
17	その場の雰囲気を壊さないように気を付けている	況
18	集団を動かすことができる	対
19	状況の変化を予想して対策を立てるほうだ	応
20	とっさの場合にも適切な判断ができる	力
21	新しい集団や仲間にすぐに溶け込むほうだ	
22	いつも新しい方向を探し求めている	
23	非常に複雑な問題にあたつてみたい	
24	自分のアイディアを他人に売り込むほうだ	
25	自分の意見をはっきりと主張する	
26	完成に必要な時間を短く見積もるほうだ	創
27	どんな問題に対する研究もユニークだ	造
28	いかなる問題についても熱中する	造
29	特殊なことに対しても，一般的な形で問題にする	性
30	一人でも集団のメンバーとしても，どちらでも活動できる	性
31	事柄の含意を見逃さない	
32	文章を要領よく書くことができる	
33	自分の言動が他人に対して強い刺激になっている	

令和元年度は，この「探究力」を測る客観検査による測定結果が，課題研究を中心とした探究活動に起因するものか否かを検討するため，本校と地域の高等学校で実施し，検査結果 を比較•分析した。本校はすべての学科・コースにおいて課題研究が行われているが，連携 が深まっている協力校A高校においては一部のコースでしか課題研究が行われておらず，実験群と統制群を作ることができた。

協力校 A 高校（ 2 年生普通科理系•統制群）
本校普通科（2年生理系）

令和元年度の 5 月から 12 月の伸長度は，実験群である本校理数科 2 年生が最も大きかった。本校普通科は厳密には統制群ではないが，理数科生徒に比べて課題研究の単位数も少なく，第 1 学年後半から課題研究を行っている理数科のような伸長度は観察されなかった。また，協力校A高校においても，当時課題研究を行っていなかった 4 組と 5 組においては，本校理数科の ような大きな伸長度がみられなかった。これらのデータより課題研究による「探究力」育成が実証されたと言える。

令和 2 年度からは，近隣のすべての高等学校において「総合的な学習の時間」に代わって「総合的な探究の時間」が開設され，課題研究が実施されたため，実験群と統制群を作成しての研究は行っていない。しかしEI検査は今後も「探究力」伸長度を測定するための重要な指標の ひとつであると考えている。

2．2．業者テストを用いた「探究力」の測定（補足データによる証明）

E I の概念を用いた「探究力」測定に加えて，補足データとして業者テストによる「探究力」検査 GPS－Academic（株式会社ベネッセコーポレ ーション）を行ってきた。平成 30 年度入学生（令和 2 年度 3 年生）は第 1 学年 12 月から第 2 学年 12 月にかけて，「協働的思考力」は横ばいであ ったが，「批判的思考力」「創造的思考力」にお いて伸長が観察された。（右図）

	批判的思考力		協働的思考力		創造的思考力	
	1年時	2 年時	1 年時	2 年時	1 年時	2年時
S	0	1	0	2	0	
A	18	26	12	15	22	25
B	18	9	20	17	14	10
C	0	0	4	2	0	

（平成 30 年度入学理数科 36 名 1 年 8 月， 2 年 12 月実施）

3．生徒が探究活動に生かせる評価方法の確立及び自己評価能力の育成に関する成果の検証 S S Hに関係するすべての学校設定科目及びフィ

ールドワーク等諸活動のパフォーマンス課題に対し て，S S H 企画推進室と担当者の話し合いによりル ーブリックを作成している。ルーブリックは年度毎 に更新•改良を重ねている。また，生徒の自己評価能力を育成するため，生徒の視点を考慮した「生徒参加型ルーブリック」の取組を進めている。これら
 のルーブリックを使用し，また生徒に自己評価•相互評価させた後，生徒にアンケートを行い，成果を分析した。第1学年に設置されている学校設定科目「探究基礎」は，上図に示されるよ らな良好な結果を得ている。なお，令和 2 年度は新型コロナウイルス感染拡大防止のため，デ ィベートを行わなかったため，上図のデータは令和元年度のものである。

4．第3学年における領域融合学習の成果の検証

第3学年における領域融合学習として，物理•数学コースと生物•化学コースの 2 つのコースを開設 している。いずれのコースも数学（微分方程式）の知識を活用する場面があり，数学を基礎とした融合学習が行われている。授業後のアンケートにより，生徒は課題を解決するための数学の重要性や，数学 を活用することの面白さを実感したことがらかがえ る。（右図）

5．一般科目の授業における「探究型」授業の展開（一般科目の授業への波及）とその成果の検証
「探究学習（課題研究）」に関わる教員が増加するにつれて，一般科目の授業内でも「探究のプロセス」を重視 した授業が増加した。 また，「主体的，対話的

＜生徒による授業評価〉	H27	H28	H29	H30	R01	R02
グループ活動やペアワークなど が効果的に取り入れられている	2.87	2.85	3.02	3.07	3.02	2.98
「考えさせる授業」の工夫がな されている	3.14	3.17	3.23	3.23	3.30	3.36

また，令和 2 年度から学校評価の項目に『すべ ての授業において「探究力」が身についた』の項目を加え，右図のような結果を得た。それによる と 8 割以上の生徒が，学校設定科目，一般科目を問わず，すべての授業で「探究力」が身についた と回答しており，一般科目の授業における「探究型」の授業展開が成果を上げているといえる。

令和 2 年度学校評価アンケート（生徒）

⑤S S H中間評価において指摘を受けた事項のこれまでの改善•対応状況

＜中間評価の結果＞
「優れた取組状況であり，研究開発のねらいの達成が見込まれ，更なる発展が期待される」
＜中間評価講評及びそれに対する改善状況＞
講評（1）理数科の外部支援「こまつ研究サポートプログラム」の組織や「一人一冊ノート」の作製，第1学年全科での「プレゼンテーション\＆ディスカッション（ P \＆D ）」 等優れた取組が行われて おり評価できる。全校体制の課題研究により授業方法の改善，生徒の主体性•協働性の向上がみ られ評価できる。
改善状況 「こまつ研究サポートプログラム」は定期的な研究報告会により少人数での複数の大学教員による指導が定着し，さらに専門的な指導者への紹介が行われている。それにより研究の深 まりと高度な研究への誘導が行われ，生徒の知的好奇心に応えている。「一人一冊ノート」の作成 は普通科でも行われており，生徒の自主的なテーマ設定に役立っている。また，第1学年におけ る全科での「プレゼンテーション\＆ディスカッション（ P \＆D ）」はさらに「科学英語」としての内容を増やす一方，「英語表現 I 」との連携を行い，英語による発表と討論の指導が充実してきて いる。

講評（2）科学オリンピックの参加者は増加しており評価できる。
改善状況 生徒の自主的参加を促し，科学オリンピックの参加者はその後も増加の傾向にあり，全国大会での入賞者も増えている。令和元年度は「科学の甲子園」選考会で優勝し石川県代表とな った。さらに，各種学会の高校生部門参加者も増加しており，課外での生徒の活動はいっそう活性化している。

講評（3）平成29年度のアンケート結果から生徒の課題研究へ取り組む姿勢が積極的であること が読み取れ，評価できる。仮説に基づく成果や課題の分析が適切に行われているかどらかの分析 は実施中であるため，今後も継続して取り組まれることが望まれる。
改善状況 平成29年度のアンケート結果に続き，平成30年度及び令和元年度のアンケート結果 からも生徒の課題研究に取り組を姿勢が積極的であることが読み取れる。特に平成30年度のア ンケートではすべての生徒が肯定的な回答をしており，意欲や科学的探究力の面で向上が見られ た。一方，仮説に基づく成果や課題の分析が適切に行われているかどらかの分析は，開発途上で あった本校独自のEI検査に加えて，他の複数の指標による分析により生徒の「探究力」の育成 が立証された。

講評（4）EI（エモーショナルインテリジェンス）という主に企業で実施されるテストを教育用に開発していこうという試みはユニークであり期待できる。
改善状況 EI 検査に関しては，第4年次に近隣の高等学校の協力を得て，実験群と統制群を作り，「探究力」検査としての一定の成果が検証できた。しかし，EI 検査は未だ不完全，不安定な部分も見られる。今後は，E I 検查の精度を高めるとともに，ポートフォリオや従来本校が取り組 んできた探究力調査，客観テスト等の質の異なるデータを組み合わせてカリキュラム評価を行っ ていきたい。

講評（5）普通科の課題研究用に「課題研究ノート」が開発されているが，マニュアルが主導するの ではなく，普通科においてもテーマを自主的に考えさせる方向で内容を工夫することが望まれる。改善状況 中間評価以前から普通科においても原則的に自主的にテーマを選ばせてきた。1年次か らテーマ設定を行う理数科とは異なり，時間的制約はあるが，中間評価の指導を受けて，テーマ設定の時間により多く時間を割き，さらに生徒の自主性を重んじたテーマ設定を行っている。

OSSH運営委員会における取組
管理職，各課主任及び教科主任からなるSSH推進委員会を常設し，各教科の取組やS S H 研究の取組について話し合いを行っている。この委員会の内容及びS S H の研究経過に関しては，随時職員会議に報告され，全職員に周知されている。

○本校の学校経営計画における位置づけ

本校の学校経営計画における，本年度の重点目標である「学びのある学校」において「課題研究等を通じて，主体的•協働的に課題を解決することができる探究力を育成する。その際，必要 に応じて県内の大学や近隣の企業から協力や支援を受ける。」と明記することで，学校全体で課題研究の重要性を共有している。

OACT委員会（非公式）における取組

学年主任を主体とする副校長主宰のACT委員会において，学習活動全般に関して話し合いが なされる場合には，S S H 推進室長が同席し S S H の成果を今後の学校全体の取組に生かすため の提案が行われる。また，研究開発に向けて学年会の理解を得るための大切な場となっている。

○学校全体で取り組む「考えさせる授業」の開発について

本校の学校評価において重要な評価項目となっている「考えさせる授業」について，S S H 研究で開発された「探究型」の授業が示唆となる事を学校全体で確認し，実践している。

（7）成果の発信•普及

（1）地域の高等学校との連携による課題研究の普及•推進

－地域の高等学校で，新たに課題研究を実施している学校（石川県立金沢桜丘高等学校，石川県立小松明峰高等学校，石川県立大聖寺高等学校）との連携を行ってきた。いずれの学校も近年 に本校から転勤した教員が複数おり，その教員を窓口として，教村を提供したり，年間を通し ての学校訪問や随時の授業見学を受け入れたりした。いずれも普通科のみが設置されている学校であるが，本校の理数科及び普通科の課題研究の手法が普及された。
－評価方法においても本校のルーブリック作成と生徒への提示の方法が参考とされ，その手法が共有された。また，評定評価の方法も本校の手法が参考とされている。
－3期目後半から，本校の課題研究発表会に近隣の複数の学校に参加し発表をしてもらい，共に大学の先生方から質問を受け，講評，指導助言をいただいている。
（2）地域の高等学校との連携による「探究力」を測る客観検査の汎用性の検証
－パフォーマンス評価及び「探究力」を測る客観検查を地域の高等学校でも使用してもらい，そ の汎用性を検証した。特に E I の概念を使った「探究力」測定法に関しては，本校の理数科生徒から普通科生徒へ，また地域の高等学校へと対象を広げ，検査結果を分析した。本校はす心゙ ての学科・コースにおいて課題研究が行われているが，上記両校では一部のコースでしか行わ れておらず，実験群と統制群を作ることができた。
（3）本校の取組の小•中学校への発信
－こまつ研究サポーターと連携し，本校生徒（理科系の部活動，希望者）が近隣の科学館である「サイエンスヒルズこまつ」において，小•中学生に対して科学実験講座を行っている。
－希望があった中学校の生徒に対しては，本校生徒が「科学の甲子園ジュニア」の指導を行った り，本校の体験入学，課題研究発表会で課題研究を見学してもらったりしている。
（4）学校訪問の受け入れ
－中間評価の結果を受け，学校訪問の受け入れが急増した。普通科の課題研究の視察を目的とし た訪問が多く，教材や生徒の作成したポスターに関わる資料を提供した。
－近隣の高等学校と同様に，県外の高等学校も評価方法に関心を示し，本校のパフォーマンス評価の体系，評定評価の方法が共有された。
（5）学会等での教員の発表
－令和元年度に行われた第47回全国理数科教育研究大会において，本校教員が「数学の良さや重要性を実感できる教科融合型の授業の取組」をテーマとして発表を行った。本校が3期目か ら取り組んでいる数学と理科の領域融合型の授業に関してその成果と課題を，全国の理数科担当教員と共有した。
－同じく令和元年度にEIの概念を使った「探究力」検査及び本校のS S H の取組について，北陸先端科学技術大学院大学の教員との共同研究者（論文の第2著者）として，日本創造学会第 41 回研究大会での発表を行った。発表当日は多くの大学教員や企業の研究者から好評価を得 て，「 A I 時代の教育」やEI検査の改善に関して，活発な議論が交わされた。

成果の普及に関して【概念図】

（8）研究開発実施上の課題及び今後の研究開発の方向性

（1）課題研究を中心に据えた全校での3年間の学習体系の研究開発

○学校設定科目（一般科目との関係性とその問題点）

1．「総合科学」及び「課題探究 I 」（理数科•1年）

「総合科学」における地歴公民科，保健体育科，家庭科を含めた教科横断型探究学習は，2期目当初から10年間継続して研究が行われてきている。今後は，一般科目においてその成果を継承していく段階にあるといえる。

一方，本校S S H の研究開発課題である「正答のない問題」に取り組み，大学での学びにつな げるには，「課題研究」のための基礎学習が必須である。生物分野は1年次に「理数生物」を履修しており，物理分野，化学分野は「総合科学」において実験を通してその内容を補っているが，課題研究のテーマ設定において，生徒がそのテーマの実現や仮説立証の可能性について，自主的 な判断を行うためには十分とは言えない。また，数学の課題研究に向けての準備や基礎学習を行 うためには，「理数数学 I 」及び「理数数学特論」では不十分である。「課題探究 I 」における課題研究のテーマ設定を充実させるためにも，1年次での基礎学習の不足を解決しなければなら ない。

2．「探究基礎」（普通科 • 1 年）

調べ学習を脱却し，証拠による論証をする習慣をつけさせるためのディベート学習の取組は， その指導体制が確立したといえる。今年度は新型コロナウイルス感染拡大の影響で，通常のディ ベート学習は行えず，代わりに小論文の指導を応用した「ディベート小論文（紙上ディベート）」 を行ったが，証拠による論証の習慣づけのためには，ディベート学習以外の方法も考えられる。今後はディベート学習にとらわれず，課題研究の基礎学習としての取組を充実させていかなけれ ばならない。

基礎課題研究では，生徒は週1時間の限られた時間の中で，意欲的に研究活動に取り組み，発表会を行うことができた。また理系希望者には探究スキル育成講座で基礎的な知識及び実験技能 の習得をさせることができた。今年度も理系希望者が多く，実験室•設備の不足が大きな課題と なっている。理系希望者には，実験の基礎技術やデータ処理能力の必要性から，全員にこの探究 スキル育成講座（実験の基礎学習）を受講させてきたが，今後は数学の課題研究のための基礎学習を導入することによって，普通科における数学の課題研究の充実を図るとともに，実験室•設備等の問題にも解決の少口を見つけていきたい。

3．「プレゼンテーション \＆ディスカッション」（全科•1年）

3 期目の指定前年度から試行し，教材開発，ルーブリック作成等，指導方法•評価方法の研究開発を行ってきた。「英語表現 I 」をはじめ教科「外国語」との連携を深めながら，英語による プレゼンテーション能力，ディスカッション能力育成に成果をあげてきている。研究開発途中か ら，特にディスカッション能力育成の方法が課題として残されてきた。今後はさらに「外国語」 との連携を深め，発表テーマに関して英語で討論する機会を増やし，ディスカッション能力のさ らなる充実を目指していく。

4．「課題探究II」（理数科•2年），「課題探究」（普通科•2年）

こまつ研究サポートプログラムにより，研究開発3期目2年目から中間報告会を実施してきた。大学教員5～6名を招へいし，少人数の研究グループごとに指導をしていただくとともに，さら に専門的な先生方の紹介をしていただいた。理数科の「課題探究II」においてはこの報告会を年 に 3 回程度行い，生徒が研究の正しい手法，専門的な研究内容について学ぶ機会となったととも に，教員が探究活動の指導法を学ぶ機会とすることもできた。しかし，普通科の「課題探究」に おいては，講演会や全体での指導に留まり，外部指導者の少人数での指導の機会を与えることが

できず，校内の専門の教員の指導に留まった。今後は，普通科においても少人数での専門家の指導の機会を増やしていかなければならない。

5．「人文科学課題研究 I」（人文科学コース・2年）
研究開発3期目から大学教員等の外部の専門家の指導を入れて，研究の充実が図られ，教員の指導力も向上してきた。しかし，文献調査を行った後，研究班のメンバーで多面的な見方や議論 がなされた結果，一定の結論が導かれるが，その結論の妥当性を客観的に評価する点に困難が残 る。今後はさらに専門家の意見を入れながら，説得力のある結論を導ける研究の在り方を念頭に，指導していかなければならない。

○課題研究を充実させるためのフィールドワーク，企業•大学等との連携及び国際共同研究

研究開発3期目において，すべてのフィールドワーク，企業•大学等との連携，国際共同研究 が課題研究の充実のためにあることが担当者の間で共有された。国際共同研究を行っている大田科学高校の教員はこの趣旨を十分に理解してくれており，また，他の外部協力者の間にも理解が得られつつある。今後もさらに理解を得られるべく，本校の探究活動の趣旨を共有していきたい。

（2）第3学年における科目融合•領域融合型の探究学習の研究開発

アンケート結果によれば，「課題探究III」（理数科•3年）においては，生徒は科目融合•領域融合型の学習に対して意欲的に授業に取り組み，自然科学に対する視野を広げることができたも のの，それをその後の探究活動へ十分につなげられなかったという実感をもつていることが窺わ れる。より効果的な授業にするためには，実験の原理や操作及びデータの処理，実験結果に対す る解釈などについて考える時間を十分確保することが必要となる。「科学探究」（普通科•3年） においても同様の問題点があり，今後の検討課題である。一方，微分方程式による数式モデルを用いた領域融合学習を通して「問題解決のための数学の重要性を感じることができた」と感じる生徒が大多数を占めた。今後もさらなる教材開発を進めていきたい。

（3）生徒の自己評価能力を育成し，生徒自身が探究活動に生かせる評価方法の研究開発

1．ルーブリックによるパフォーマンス評価の充実と生徒参加型ルーブリックの取組

学校設定科目及びフィールドワーク等諸活動のパフォーマンス課題に対して，S S H 企画推進室と授業担当者の話し合いによりルーブリックを作成している。ルーブリックは年度毎に更新•改良を重ねており，生徒に提示することで，到達目標を共有し，生徒の主体的な学びを促すのみ ならず，指導と評価の一体化を進め，改善に生かすことで指導の質を高めている。また，生徒の自己評価能力を育成するため，生徒の視点を考慮した「生徒参加型ルーブリック」の取組を進め ている。「生徒参加型ルーブリック」の取組は生徒のアンケートによるものが中心だったが，ル ーブリックに被評価者の意見を取り入れるためには，生徒の自己評価による評価の言語化が重要 であることが明らかになった。今後はポートフォリオの記述の分析をはじめとして，他者の評価 との比較により「ルーブリックが生徒の言葉で書き換えられる」段階にまで発展させていかなけ ればならない。

2．「探究力」の伸長度を測定するための客観的検査（EI検査）
本校では，専門家の指導を受けながらEIの概念を用いた「探究力」を測定する検査を研究開発してきた。この検査によって得られたデータと，その他の調査や業者テスト等のデータを比較，分析することで，生徒の「探究力」の伸長を数値化することができた。しかし，E I 単独で「探究力」の伸びを証明するには不十分である。今後は，ポートフォリオや従来の探究力調査，客観 テスト等，質の異なるデータを組み合わせてカリキュラム評価を行っていくことが望ましい。

餈料編 回 次

（4）関係資料
資料1 令和2年度 教育課程表 65
資料2 学校設定科目評価表，事業評価表 66
学校設定科目評価表
学校設定科目「総合科学」「課題探究I」
学校設定科目「プレゼンテーション\＆ディスカッション」
学校設定科目「課題探究II」
学校設定科目「課題探究」
事業評価表
野外実習（生物）
サイエンスツアー
資料3 石川県S S H 運営指導委員会の記録 72
資料4 各種発表会•学会・コンテストへの参加 74
資料5 教員の学会等発表 76
資料 6 卒業生追跡調査 77
資料7 開発教材一覧 79
資料8本文中に掲載したルーブリック・検査用紙一覧（掲載したもののみ） 79
資料 9 教材ワークシート集 80
資料1 0 研究テーマ一覧 87
「課題探究 II 」
「課題探究」（理系）（文系）
「人文科学課題研究 I 」
S S H だより 91

44関係資料

資料1 令和2年度教育課程表

○印：学校設定教科•科目

＊ ＊印はSSH 研究開発に係る教育課程の特例による削蔵および人文科学課題研究IIIによる代替を示す

学校設定科目評価表（「総合科学」「課題探究 I 」）

科目名総合科学，課題探究 I			
対 象	1年生理数科（40名）	実施目	毎渪火，木，金曜日
概 要	- 科学者の倫理観，健 - 物理，化学を先行的 - 物理，化学，生物の 究II」で取り組む課題	を超えた必要な 」と連動	学習を行う。識，実験技能を テーマ設定を行

目 的第2学年で取り組む課題研究に必要な知識，技能を習得するとともに，研究に対する意識を高める。

身につけさせたいカ			
－主体的に考える能力	－課題発見，解決能力	－教科の基礎知識，実験技能	－探究スキル

生徒による事業評価			
評価方法	アンケート調査	（回答数	39）

調査項目	集計結果（総数39）			
	ア	イ	ウ	工
	肯定	$\begin{aligned} & \text { やや } \\ & \text { 肯定 } \end{aligned}$	$\begin{aligned} & \hline \text { やや } \\ & \text { 否定 } \\ & \hline \end{aligned}$	否定
（1）（物理，化学）の授業に積極的に参加できたか？	34	5	0	0
（2）（ ${ }^{\text {（ }}$（ ）の基礎的な知識を身につけることができたか？	29	9	1	0
③）（物理，化学）の授業を通して科学に対する興味関心が高まったか？	32	7	0	0
（4）（教科横断学習に）積極的に参加できたか？	32	7	0	0
（5）数学，情報の授業で，探究スキルを身につけられたか？	26	13	0	0
⑥）家庭，保健，倫理の授業で科学的にアプローチする姿勢が身についたか？	23	16	0	0
（7）（数理融合）の授業を通して，課題解決のための数学活用力が身についたか？	27	11	1	0
（8）「総合科学」「課題探究I」を通して，主体的に考える態度が身についたか？	26	13	0	0
（9）探究力（情報収集力，整理•分析力，表現力）がついたか？	24	15	0	0
（10）「総合科学」「課題探究 I 」は有意義だったか？	31	8	0	0

－科学についての知識を深めることができた。•論理的に考える癖がついてきたと思う。•来年のために一年生のうちか らパソコンを使って活動するのはよいと思いました。•物理がどのようなものか知ることができ，基礎的知識を学ぶこと ができました。•学ぶだけではなく，活用しなければならないのだなと感じた。・これから授業で今回学んだことを活か したり，もつと学びを深めたりしたいと思った。•細かく，集中した分野ではなく，幅広い範囲を学べたので，すごくた めになったし，他の教科（数学）でもそれを応用し生かそうとできました。•興味のあることも，苦手なことも，さまざま なことに触れることができて良かった。・さまざまな科学的視点が身についたと思ら。ここれからも積極的に取り組んで知識と発表の技術を高めたいです。•物理や化学といつた科学的科目においては主体的というより，情報を抽象化して客観的に見る力がついたと思う。•結果がわからない実験は面白いと感じた。•他の人との話し合いで自分にはなかった発想がたくさん出てきて楽しかった。•理数科目を通して社会問題を考えることや，社会問題などについて調べることは，非常に有意義なことだと思う。・いつもの授業とは違って自分の知りたいことが知れてよかった。•物化生地は繋がって いる。•自分の興味を引かれる内容を深められてとても楽しい。•物理の楽しさが分かった。•化学式がおもしろいと思った。・いろんな面から考える力がついた。

担当者による事業評価
評価方法 アンケート調査結果及び生徒の活動の観察を元に協嶬する。
総評
「総合科学」および「課題探究 I 」は，平成28年度から3期目5年間にわたつて開講されてきた。生徒アンケート調査 こよると，項目（9）「授業が有意義だったか？」という質問に対する最も肯定的な回答が年を追うごとに増加した。ま た，アンケートのいずれの質問項目に対しても9 9 割以上の生徒が肯定的に回答した。指導方法や教材内容についての工夫や改善を積み重ねることによって，より充実した授業とすることができたといえる。また，今年度は，数学と物理の融合授業の実践に取り組えだ。項目（7）「数学の活用力がついたか？」に対して最も肯定的な回答をした生徒の割合が約 7割に上ったことからも，生徒の興味関心を高め，学習意欲を引き出すことにつなげられたのではないだろうか。課題研究に取り組むために必要とされる力を伸張させるためには，多くの時間をかける必要があるが，今後もより効果的な授業のあり方を模索していきたい。

来年度に向けての課題

1 年生の学習段階では，基礎的な知識を習得するために時間をかける必要があるため，多くの知識を必要とする本格的な探究活動に取り組むことは難しい。本科目は3単位で実施しているが，すべての学習内容に関して全体的に時間が不足しているため，生徒の学習段階に応じた適切かつ興味•関心を高める上で効果的な教材を開発していく必要があ る。また，今年度は数理融合授業やものづくり学習の実践を試みたが，こういった学習への取り組みにおいても生徒の モチベーションを向上を図ることが重要である。次年度に向けて，より効果が上がるような指導方法改善の取り組みを继続していきたい。

学校設定科目評価表（「プレセ゚ ウテーショコ \＆デ イスカッション」）

科目名	プレゼンテーション \＆		
対 象	1 学年普通科•理数科（320名）	実施日	毎用1時限（実施雚日ばクラスで異なる）

概 要｜情報の取扱いの方法を学習した後，はじめは身近な，次に科学的なトピックを与え，英語で発表，発表に対して準備した討議を行う。ルーブリックを使用した評価を行うと共に，授業アンケートで成果 を検証する。

目 的•英語で発表し，英語で討論する力を身につける。 －プレゼンテーションソフトを活用して発表を行う力を身につける。 －身のまわりの問題や事象に関する科学的な見方や考え方を養ら。

身につけさせたいカ

－情報処理能力 •表現力 •言語能力 •主体的，協働的に問題を解決する力

生徒による事業評価
 評価方法 1 アンケート調查（回答数 313）

調査項目		集計結果（総数313）			
		ア	イ	ウ	工
		肯完	やや	やや	否定
	P \＆D の授業を通して，英語で発表す	107	184	21	
	（2）P \＆D の授業を通して，英語で討論する能力が身についたと思いますか？	63	192	57	
	（3）P \＆D の発表の準備や練習は十分にできましたか？	86	189	34	
	（4）このような英語で発表する授業は，将来役に立つと思いますか？	193	113	6	
（5）評価基準（ルーブリック）を事前に提示しましたが，発表の準備をする上で参考になりましたか？		106	5	21	
（6）今年度，評価で使用したルーブリックの評価の観点は…「話し方」「英語（文法•発音）」「内容」「リサーチの徹底」「理解しやすさ」「構成／流れ」でした。あなたがこの他にルーブリッ クにつけ加えた方がよいと思う観点はありますか？自由に書いてください。					
•表情 ・スライドのわかりやすさ •・ユニークさ（飽きずに聞いていられるかどうか）•声の大きさ •発表態度 •・ジェスチャー，身振り手振り					
－自分で情報を抜き出して要約して英語の文章に仕立てるといらのが，難しかったけれど，楽しかった。実際に英語 で，工夫して話すことを体験したので，きっと色々な場面で役に立つと思う。 －将来，社会に出たときにグローバル社会において役に立つと思った。また，人前で発表することに不安や䎵ずかしさ があったけどP\＆Dを通して少し失くすことができたからいいものだと思った。 －短い時間の中で内容をまとめてパワーポイントを作らなければいけないのは大変だけど，時間がないからこそ必要な ところだけをピックアップして簡潔にまとめる能力がついたと思う。 - 原稿などを訂正して返してくれるため，自分のミスしやすいところを見つけることができてよかったです。 - 自分で文章の構成を英語で組み立ててそれを発表できるので英語の力が向上すると思う。 - 聞き手が理解しやすいように話す（易しい英語を使う，ゆっくり話す等）方法を学ぶことができたので，日本語での発表でも活かしていきたい。 - 日本語での発表•討論でさえ出来ないのに，それを不慣れな英語で行うのはとても難しく，しんどいところがある。 - もう少し準備に時間をかけられるとよいと思った。 - 頭で考えたことをすぐに口に出すことはやつぱりまだ難しいと思うので，これからも練習したい。 - 話す機会があるのでスピーキングが苦手な身としては嬉しい。 - 発表する力や，調べる力をしっかり身につけることができる。 - ALTの先生方に本場の表現方法を習って発表に取り入れたい。					

来年度に向けての課題

学校設定科目評価表（「課題探究 II」）

目 的
生徒の主体的な研究を通して，自然の事物•現象を探究する方法を習得させ，科学的探究力的を高める。また，研究成果を創意工夫してまとめ，発表することにより，得られた情報を他 の多くの人に共有してもらうための自己表現力を高める。

身につけさせたい力	
\cdot 科学的探究力 \quad •自己表現力	

生徒による事業評価		
評価方法	アンケート調查	（回答数 38）

調査項目	集計結果			
	肯定	やや	やや	否定
（1）積極的に参加できたか。	28	10	0	0
（2）課題に応じてうまく探究（調査，実験，評価等）することができたか。	25	13	0	0
（3）プレゼンテーションやレポート作成を主体的に創意工夫して行うことが できたか。	28	10	0	0
（4）自然の事物•現象に対する科学的探究力が増したか。	30	8	0	0
（5）自己表現力（プレゼンテーション能力やレポート作成能力）が増したか	26	12	0	0
（6）今後もこのような内容で授業を実施した方がよいか。	32	5	1	－
⑦ 今回の行事の改善点や感想を簡潔にまとめよ。				
- 達成感があった。 - 研究活動に対する興味が深まったので良かったと思う。 - 色々なことと両立してこのようなことができたのは楽しかった。仲間と協力して問題解決できるのが楽しかった。 - 勉強と同時に進めることは難しかったけど，今後の人生で大きな糧となる経験になった。 - 理数科に入って本当に良かったと思いました。－計画性の重要さを知った。 - 研究自体もそうですが，班のメンバーとディスカッションをしたり，外部の方々と交流を行ったりと，自分のためになる経 験をたくさんさせて頂きました。 - 自分たちで考えることの大変さや，楽しさを学ぶことができた。 - 一つのテーマに対して取り組むことが難しかった。でも楽しかった。 •考えることの面白みがわかった。 - 想定外のことが起こることの難しさを感じました。 •大学や将来に繋がるような探究になった。 - 仲間と協力することがとても大事である事を実感した。•大学進学後の研究が楽しみになりました。 - 仲間と協力する大切さを学べました。また，その結果を大学の先生やいろいろな人に良い評価をしてもらえて達成感 がありました。 - 生徒主体で内容を考えることは様々な力が必要になると思った。 - 大変だったけどやり切った感ありました。諦めんとこんだけできるんやーって自分の能力がわかった気がするかな。 - 根気強く仲間と協力してひとつの事をやり遂げる大変さとやりがいを感じられて，貴重な経験になったと思います。 - 試行錯誤しながらも熟慮し追究することへの楽しさと難しさを感じた。また，仲間と研究することにより互いの苦手な部分と得意な部分を組み合わせながらひとつの研究が出来たので，協力の大事さを改めて学べたと思う。 －段取りが大切だと思った。テーマや予定など，最初のスタートを明確に決めるかどうかで結果が大きく変わると思った。				

担当者による事業評価
評価方法
生徒の課題解決の能力や態度および生徒へのアンケート調査結果をもとに関係教諭で協議する。

総評
アンケートの集計結果（1）から，「肯定」はやや減少したものの，全員が積極的に参加できたのではないかと考え られる。（2），（3），（4，（5）いずれの項目でも「肯定」の値は過去5年間の中で最も高かった。これは，今年度研究活動 が 6 月からスタートしたため，研究の期間が短く，大学の先生方や担当教員の指導が例年よりも手厚く入ったためで あると思われる。その結果，研究に対して困難を感じた生徒が少なかったのではないかと考えられる。
今年度も 1 人 1 冊研究ノートを持たせた。少ない研究時間で結果を出さなければいけないという意識からか，指導教員も生徒たちも結果をこまめにメモするように心がけており，例年よりもノートの利用は高かった。

来年度に向けての課題

今年度の石川県SSH生徒研究発表会はポスター発表の様子を録画し，発表会が動画による視聴であったため，十分 なポスターセッションができなかった。そのため，アンケートの調査から，石川県SSH生徒研究発表会のポスター発表会に対する評価では「満足」と答えた生徒の割合が5ポイント減少した。また，ポスター発表会によってプレゼン テーション能力の向上に有効であると答えた生徒が例年よりも8ポイント減少した。次年度は例年行っていた時期に ポスターセッションを行えるように工夫したい。

学校設定科目評価表（「課題探究」）

覀	
評価方法	アンケー
総評	
質問5項目のすべてについて，昨年度と同様の良好な結果が得られた。最も肯定的な回答（ア）をした生徒の割合 は，調査項目（1）では56．1\％で昨年度とほぼ同じ，調査項目（5）では 52.3% となり， 4 年間で最も良い結果が得られた。調査項目（2），（3），（4）では昨年度よりもやや低い結果になったものの，課題研究の指導がある程度軌道に乗り，生徒に身に つけさせたい能力の伸張を図る上で効果的な科目になってきたと考えられる。また，授業で学んだ知識の活用経験を通 して，通常の授業の重要性を実感し，学習意識の向上にもつながった。一昨年度からは体育分野の研究も加わり，研究 テーマの幅が広がり，教員の負担軽減にもつながった。開講 4 年目となり，これまでに多くの教員が指導体験を持って いることによって，スムーズに研究を進めることができた。	

来年度に向けての課題

2年生普通科の課題研究では，多くの生徒が探究活動に取り組むため，指導する教員数や実験室，実験装置などがか なり不足している。昨年度のような一人の教員が最大6テーマ，30名の生徒を担当することはなかったものの，多くの生徒（最大15名）を指導しなければならない状況は慢性的に継続している。このような状況で十分な指導を行うことは大変困難であるが，現状を劇的に改善するのは簡単ではない。次年度以降も引き続きより効果的な指導方法を模索する とともに，十分な教員数や実験機器の確保を要望したい。

事業評価表

事業名	野外実習（生物）		
対 象	第1学年理数科（40名）	実施日	7月23日（木）
概 要	のと海洋ふれあいセンターにて，海洋生物の採集•観察，ウニの人工受精および発生実験，顕微鏡観察。		

[^0]
身につけさせたい力

－科学的探究力 •人間力（協調性）

生徒による事業評価

評価方法 1 アンケート調査（回答数40）

担当者による事業評価

評価方法 生徒，担当者のアンケート調查結果，意見をもとに協議する。
今年度は例年よりも事前研修が不十分であったため，生徒が自主的に実習を進める様子が少なく教員が指示を出 すことが多かった。アンケートによる自己評価において，顕微鏡操作が実習前よりも身についたと答えた生徒が多 かったことからも，実験操作の習得がよくできていた。また，生物選択者と地学選択者が顕微鏡操作を通して班内 で協力し合って実験を進めることができた。生徒たちが十分海洋生物を採取できなかったことを想定して予め海洋生物を準備しておいた。結果的に準備したものを使用することはなかったが，安心して実習に取り組むことができ た。

来年度に向けての課題

例年よりも「グループ内で互いに協力し，実験•実習を円滑に行うことができたか。」といら設問に対して否定的な回答が見ら れたことから，実習時の班で事前研修を行い，班員との活動に慣れさせるようにしたい。
事前研修が例年よりも少なかったことにより，積極的に質問をしてくる生徒が多かった。このことから，事前研修および事後研修の内容と時期を検討し，事前研修でこの実習における課題を発見し，事後研修で考察を行うようなプログラムを考えたい。

事業評価表

事業名 サイエンスツアー

概 要•金沢大学（理学類•工学類）の研究室を見学する。
－石川県立大学を訪問して生物実験（P C R ，リアルタイム P C R ）を行う。
目 的第一線の研究者•技術者等から直接講義や実習指導を受けることにより，科学技術に関する興味•関心を高め，学ぶ意欲を育てる。

身につけさせたい力

－科学的探究力 •自己表現力

生徒による事業評価
 評価方法 \quad アンケート調査（回答数 38 ）

調査項目	集計結果			
	ア	イ	ウ	工
	肯定	$\begin{array}{\|l\|} \hline \text { やゃ } \\ \text { 肯定 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { やや } \\ \text { 否定 } \end{array}$	否定
（1）積極的に参加できたか。	33	5	0	0
（2）大学や研究施設で行われている研究に興味をもち，研究者や技術者に質問 できたか。	17	13	7	1
③ 今回の行事を通して科学的探究力は増したか。	28	10	0	0
（4）今後もこの行事を実施した方がよいか。	29	8	1	0

（5）今回の行事の改善点や感想を簡潔にまとめてください。

- 自分が将来どらなりたいのかを考えるのにおいて自分の考えに非常に良い刺激を与えてくれた。
- 大学と高校の違いが理解でき，自分の将来の大学生活がイメージしやすくなった。
- 学校では体験できないことができた。見学した研究に興味を持つことができた。
- 大学のすごさを肌で感じられたことで勉強への意欲が増した。課題探究に対する関心が高まった。
- 普段学校では学べないことをたくさん学ぶことができ，大学進学に大きな期待を持つことができた。
- 楽しく研究のお話を聞いたり，実験をしたりできたから。また，人からのお話を沢山聞けた。ただし，関東サイ エンスツアーがあるならそっちの方がいいと思います。
- 科学に対する探究心が高まるため良いと思らが，来年は縮小版ではないサイエンスツアーをしてほしい。
- 電気泳動で普段授業ではできない光を当ててやる実験や，大学で日々やってる研究内容などを知る事ができて大変ためになった。
- 自分の興味のなかった分野に興味を持つことができた。普段簡単に行けない場所に行くことができた。
- 大学の進路を決めるために参考となり，大学の雰囲気を味わらことができた。

Abstract

担当者による事業評価

\section*{評価方法
 アンケート調査結果を元に協議する。}

\section*{総評}

今年度は通常の実施形態（1泊2日での関東地方の大学，研究所見学）ではなく，1日で地元の金沢大学および石川県立大学での研修となったが，アンケートの集計結果は「積極的に参加できた」と回答する生徒の割合が 100% となり，良好な結果となった。クラスを2グループに分け，金沢大学ではさらに少人数に分かれて研修を行い満足度が高くなったのではないかと考えられる。 生徒たちは，第一線で活躍する研究者と直接対話し，その研究の場を目にすることによって，科学に対する興味関心を深め，学習意欲を高めることができた。各研修場所では，研究者の方々の懇切丁寧な対応のおかげ で，生徒の積極的な取り組みが随所に見られ，充実した内容とすることができた。

来年度に向けての課題

今年度は1日の日程で地元の金沢大学および石川県立大学での見学ツアーとなったが，見学や実習内容に対す る満足度は総じて高く，充実したサイエンスツアーとすることができた。全国的に新型コロナ感染が拡大して いる状況下にあり多忙な中でも，感染対策をとりながら対応いただいた大学の関係者の方々に深く感謝した い。

資料3 石川県SSH運営指導委員会の記録

令和 2 年度 第 1 回 SSH 運営指導委員会の記録
令和 2 年 8 月 25 日（火）実施
運営指導委員（全員出席）

氏	名	属
所	名	
國藤 進	北陸先端科学技術大学院大学	名誉教授
草野 英二	金沢工業大学バイオ・化学部応用化学科	教 授
遠藤 貴広	福井大学教育•人文社会系部門	准教授
高木 泰治	小松マテーレ株式会社	代表取締役 副社長
山本 秀徳	小松市立木場小学校	校 長

教育委員会参加者

氏	名	所 属	職
夺岸	俊哉	石川県教育委員会事務局	学校指導課

主な質問（それに対する回答）•意見（○は運営指導委員の質問•意見，\Rightarrow は学校側の説明を示す）

議題1 SSH3期目の取組と成果について

○研究開発課題について，企業はもちろん世界全体が今年のコロナ禍によって考え方，環境が様変わつ た。これこそ「正答のない問題」であって，環境が変わると現在の世の中の状況になるということが今の実態である。よって，高校生の教育に「正答のない問題」つまり環境が変わつても生きていける ような力を植え付けられるようにしてほしい。つまり，そのような力も探究力というのではないかと思う。

○高校生が課題研究のテーマを選ぶ際には，社会に出て活躍，適応できるような課題を選ぶようにする ことがよいのかもしれない。
○現在はコロナ禍で，オンラインの授業が増えてきておりフィールドワークをどのように扱らかなど，大学も苦労している。
○教職大学院生が定期的に学校に向かい，助言することで専門ではない分野でも研究に協力するように なってきている。大学としては高校生の生の声を聴くことで実態がつかめるというメリットがある。文理をまたいだテーマ設定を行うことや，文系の研究にはあえて理系の専門家，理系の研究にはあえ て文系の専門家を講評者として呼ぶなどとすれば研究の本質をつかむためによい効果がある。
○普通科課題研究には大学の先生の審査が入るのかどうか。
\Rightarrow 普通科には大学の先生だけでなく大学院生の審査も入っている。
○数学と物理の融合というような研究はしているが，文理が融合したような研究テーマはあったか。
\Rightarrow そこまでは今までなかった。
○企業や大学では文系理系どちらのセンスも必要だということが学べたらよい。
○企業においては文理が合体しており，企業として，文系，理系などというくくりで考えていては生き残ることができない。
\Rightarrow 企業的な視点で課題研究を考えるのはなかなか難しい。
○数学的に考えること，何のために微分積分を学ぶのか，これは何にもしくは世の中に応用できるのか という橋渡しがないと学ぶ意義がわからない。
\Rightarrow 次の新しい学習指導要領には記載されているので，このような考え方は必要になってきている。
○4期目の申請があるが，「全く役に立たないけれども，面白い。」というようなおもしろい，もつと調 べたいというようなものがあるのがよいのではないか。ユニークな発想を伸ばし，整理することが大事なのではないか。

議題2 SSH 研究の評価について

○評価は何段階か。
\Rightarrow このデータは 3 段階である。今年から 3 段階から 5 段階にした。もともとは 5 段階で開発されたもの。

○3段階だと真ん中を気楽に選んでしまうという傾向がみられた。よって 5 段階にもどした。どのファ クターが一番効いているのか，というのは分散分析すればわかる。
○データがおかしい生徒がいるが・••。
\Rightarrow 全ての項目で 1 をつけていたのに，次は全てで 5 をつけた生徒である。
○トップのイレギュラーとボトムのイレギュラーを外さないといけない。個人評価には使いにくい。集団評価として使った方がよい。

議題34期目申請に向けて

○数学的，物理的，哲学的という考え方が必要である。数学，理科においては先人が培ってきたものが大きい。探究活動において歴史的意味合いは重要ではないか。
\Rightarrow どのあたりで歴史的なものを導入するのがよいと思われるか。
○レベルアップする生徒はまだまだ未熟なので，先輩•先人が今までやってきたことがあることを理解 することは大事ではないか。創造力のある生徒を育てるためには，探究の過程を知ることは大事なの ではないか。道に迷ったら戻る，など先人の通ってきた道を知ることは重要であるので，探究活動で導入したらよい。
○歴史というより哲学，探究の過程などを理解して現実の環境の変化に解をなしていくことが必要だ。
○何を大切にしていくかを共有していくことが大事。評価についてはお互いがどのような物事を見るた めのめがねを持っているかを確認するものだということ。教員同士だけではなく，生徒自身も小松高校で学ぶことについて何を重要視していくかを共有することが大切である。
○先生が作ったルーブリックで自己評価させられているということではなく，生徒が学びの主体となる ことが大事である。
OSSH で取り組んだ成果を次の教育課程に引き継ぐかが大事。それもさらに次の次の教育課程につなげ たい。ラーニングコンパスが提示されており，新しい価値を創造する力，責任を引き受ける力を育成 するための評価としてリテラシー評価を改善していく方向となっている。
○高校の普通科を再編するという考えが出ており，小松高校は次の次の学習指導要領を意識してどのよ らなビジョンを明確にしていく必要がある。次の学習指導要領を意識するのではなく，次の次の学習指導要領を意識しなくてはならない。
○大学への学び，とあるのはどのような意味か。
\Rightarrow 高校生の中で高度な研究を行えること，社会にもつながるような研究という意味として考えている。高大接続としての意味もある。
○プロジェクトチームとして将来やっていけるかを測定したらどうか。
○探究力だけにこだわるのではなく，問題意識も育成したらよい。そのためにもフィールドワークは重要である。
○トライアンギュレーションとして，小松高校のポートフォリオからキャリアパスポートへの提案がで きるようなものが 4 期目でまとめられるとよいのでは。
○現在の EI 調査では自己対応力など自分自身をよくわかっている深く考えている人ほど低い点数をつ けるかもしれない。
OEI 調査についてもう少し探究力を高めるような項目を重視するような形にしてはどうか。
OEI 調査の平均値では評価といらものでは損をするものがいるのではないか。
○粘り強さをEIで測れることに期待したい。
○探究力にこだわりすぎると問題意識が低下するので問題意識を育成するような指導体系が必要では ないか。
○小松高校に入学するとこんなにすごいことができるというような期待を小学生，中学生に持たせてほ しい。小学校，中学校からつながって，大学までの大きな流れを作ってほしい。
第 2 回運営指導委員会 令和 3 年 3 月 1 日（月）開催（予定）

資料4 各種発表会•学会・コンテストへの参加

各種科学系コンクール参加数

平成 28 年度

	実施日	参加人数	全場	結果
数学オリンピック 予選	$1 / 9$	7	勤労者文化会館	
物理チャレンジ 1 次チャレンジ	$7 / 10$	8	金沢泉丘高校	3 名が予選通過
化学グランプリ 1 次選考	$7 / 18$	5	金沢大学	
生物学オリンピック 予選	$7 / 17$	5	金沢大学	
地学オリンピック 予選	$12 / 18$	0	金沢大学	

参加のベ25名
（全国）

平成 29 年度

	実施日	参加人数	会場	結果
数学オリンピック 予選	$1 / 8$	16	勤労者文化会館	1 名が予選通過
物理チャレンジ 1 次チャレンジ	$7 / 9$	5	金沢泉丘高校	
化学グランプリ 1 次選考	$7 / 17$	5	金沢大学	
生物学オリンピック 予選	$7 / 16$	8	金沢泉丘高校	
地学オリンピック 予選	$12 / 17$	4	金沢大学	

（全国）

数学オリンピック 本選	$8 / 19 \sim 8 / 22$	1	富山県民会館	

平成 30 年度

	実施日	参加人数	会場	結果
数学オリンピック 予選	$1 / 14$	11	勤労者文化会館	
物理チャレンジ 1 次チャレンジ	$7 / 8$	9	金沢泉丘高校	1 名が予選通過
化学グランプリ 1 次選考	$7 / 16$	10	金沢大学	1 名支部奨励賞
生物学オリンピック 予選	$7 / 15$	13	金沢泉丘高校	

参加のべ 43 名
（全国）

物理チャレンジ 2 次チャレンジ	$8 / 19 ~ 8 / 22$	1	国立オリンピック記念 青少年総合センター	優良賞

令和元年度

	実施日	参加人数	会場	結果（受賞）
数学オリンピック 予選	$1 / 13$	14	勤労者文化会館	未着
物理チャレンジ 1 次チャレンジ	$7 / 7$	10	金沢泉丘高校	
化学グランプリ 1 次選考	$7 / 15$	12	金沢大学	1 名支部奨励賞
生物学オリンピック 予選	$7 / 14$	13	金沢泉丘高校	

のべ 4 9 名参加

令和 2 年度

	実施日	参加人数	会場	結果（受賞）
数学オリンピック 予選	$1 / 11$	23	オンラインで実施	未着
化学グランプリ1次選考	$10 / 25$	5	オンラインで実施	1 名が予選通過
生物学オリンピック 予選	$11 / 1$	2	オンラインで実施	

（全国）

化学グランプリ 本選	$11 / 22$	1	オンラインで実施	銀賞

（科学の甲子園）

平成 28 年11月 Wしかわ高校科学グランプリ（「科学の甲子園」石川県代表選考会）理数科 4 チーム 30 名参加 総合 3 位

平成29年10月 Wしかわ高校科学グランプリ（「科学の甲子園」石川県代表選考会）理数科 4 チーム，理数科普通科混合 1 チーム 38 名参加総合 5 位
平成30年10月 10 月かわ高校科学グランプリ（「科学の甲子園」石川県代表選考会）理数科5チーム，理数科普通科混合1チーム48名参加総合 7 位

令和元年1 0月 Wしかわ高校科学グランプリ（「科学の甲子園」県代表選考会）理数科1年2チーム，理数科2年2チーム，1年生混合1チーム （結果）実技競技 1 位，筆記競技 1 位 総合優勝（石川県代表）

令和 2 年 3 月 「科学の甲子園」全国大会（中止）

令和 2 年 10 月 いしかわ高校科学グランプリ（「科学の甲子園」石川県代表選考会）理数科 5 チーム，理数科普通科混合 1 チーム 36 名参加総合 4 位
（全国SSH生徒研究発表会）

令和元年 8 月 海外校歓迎レセプション参加（歓迎挨拶を担当）
「チェック柄の印象の移り変わり」（数学分野）
令和2年 8 月 ポスター発表賞
「液面で浮上する液滴の安定性について」（物理分野）
（石川県高文連理化部）

令和元年 8 月 全国高等学校総合文化祭 自然科学部門 奨励賞
「ライデンフロスト効果の解析とその応用」（物理分野）
（生徒による国内学会高校生部門発表•国際学会発表）

平成28年度 第13回日本物理学会 Jr．セッション 奨励賞
「減衰振動における空気抵抗の性質」
平成28年度 ジュニア農芸化学会2017
「コウジカビを用いた生分解性プラスチックの分解」
平成29年度 第14回日本物理学会 Jr．セッション 奨励賞
「小球の衝突とクレーターの形成」
平成29年度 ジュニア農芸化学会2018
「コウジカビを用いた生分解性プラスチックの分解制御」
平成30年度 第15回日本物理学会 Jr．セッション 奨励賞
「ライデンフロスト効果の解析とその応用」
平成30年度 ジュニア農芸化学会2019
「ゴキブリの嗜好性を利用した学習効果の測定」
令和元年度 日本創造学会 第41回研究大会
「ビンから水を注ぐときに出るトクトク音について」（最優秀賞•物理）
「ナミテントウの変態期間における記憶保持について」（最優秀賞•生物）
「スライムの材料比とその性質」
「スーパーボールの制作方法の違いによる弾性の違い」
令和元年度 第 84 回日本陸水学会
「鳴き砂の物理的特性と発音メカニズム」
「小松高校におけるジャゴケの生育環境の研究」
令和元年度 第 16 回日本物理学会 Jr．セッション（開催中止）
「鳴き砂の物理的特性と発音メカニズム」
「過冷却の解析とその応用」
「液面を浮上する液滴の安定性について」
令和元年度 京都大学サイエンスフェスティバル（開催中止）
「液面で浮上する液滴の安定性について」（石川県代表）
令和元年度 ジュニア農芸化学会2020（開催中止）
「ゼニゴケの生育環境の研究」
令和2年度 第 17 回日本物理学会 Jr．セッション（オンライン開催）
「ベナール対流の発生条件と流動速度の関係」
令和2年度 ジュニア農芸化学会2021（オンライン開催）
「ユズの酸化防止作用の有無についての研究」

資料5 教員の学会等発表

日本創造学会第41回研究大会

第47回全国理数科教育研究大会

「小松高校 S S H 課題研究 3 年間の進め方と評価について」「数学の良さや重要性を実感できる教科融合型授業の取組」

令和元年度 スーパーサイエンスハイスクール情報交換会
校長等分科会 事例発表 「全校体制の課題研究の取組」

資料6 卒業生追跡調査

平成 23 年度より，理数科卒業生への追跡調査をおこなつている。平成 26 年度に平成 $18,19,20,21$年度卒業生，令和 2 年に平成 22,23 年度卒業生に調査をおこなった。また，令和 2 年に平成 24 年度卒業生に大学院への進学の有無のみの調査を行った。

1．現在の職業

2．最終学歴

平成18，19年度卒業生（SSH未指定）

3．学生時代の専攻
平成22，23年度卒業生（SSH3，4期生）

平成20，21年度卒業生（SSH1，2期生）

平成18，19年度卒業生（SSH未指定）

4．小松高校理数科で学んだことで記憶に残っていること，思い出になっていることは何ですか。 また，今の自分の生活に役立っていますか。（平成 22,23 年度卒業生）
－合宿でウニの観察を行ったこと。顕微鏡で変化を観察し，ワクワクした思いを抱いた瞬間は忘れま せん。
－ウニ研や関東サイエンスツアーなどの外部の研修に参加させていただいたこと。理系の勉強をする中で「客観的」「論理的」に物事を考える力は身に付いたと思います。
－関東サイエンスツアーで筑波や東大など，普段石川県に暮らしているとまず行くことができない場所に自分の目で触れることができたことが特に重要だった。生まれも育ちも都市部で過ごしてきた人達と話をすると普段の環境の中で文化的•学術的な刺激に触れる機会が圧倒的に多く，それが私生活や勉強にもいい影響を与えている。
－ウニ研，関東サイエンスツアー，大田科学高校との交流など SSHとしての活動はどれも記憶に強 く残っている。今思い返すと特定の分野に限らず幅広い科学技術分野に触れられたこと，そしてそ の分野に従事している人の話を直接聞けたことは，自分の進路決定の基礎になっている。
－課題研究では，県外で学会発表したり大学で研究させてもらったり，試行錯誤をしながら自由に本格的な研究ができたことは大学院の研究においても役に立っていた。
－実験をする機会が多くあったことは学ぶ中で興味を持てて楽しかった。また，物理チャレンジに参加したことは理系分野で挑戦する経験が出来て良かった。

資料7 開発教材一覧

（1年生）
2019 ディベート学習ノート
2020 基礎課題研究ノート
Presenting a Scientific Process
カーボンニュートラル
デジタルカメラを用いた重力加速度の測定
Presenting a Scientific Article
表面張力の測定
屈折率の測定
風力エネルギー
光合成に有効な光は何か
模型を用いた結晶空間充填率の計算
（2年生）
課題研究記録日誌
課題研究ノート
Jゼミ記録日誌

学校設定科目「課題探究」（普通科普通コース文系）
学校設定科目「課題探究」（普通科普通コース理系）
学校設定科目「人文科学課題研究 I 」（普通科人文科学コース）
他
（3年生）
ニュートンの冷却法則
回転運動する水面の形状
抵抗力がはたらく落下運動
反応速度
（以上 微分方程式による数式モデル）
乳酸発酵の定量
音波の干渉一クインケ管
CDの溝間隔測定遺伝子組換え

電気泳動

学校設定科目「課題探究III」（理数科 数学•物理コース）
学校設定科目「課題探究III」（理数科 数学•物理コース）
学校設定科目「課題探究III」（理数科 数学•物理コース）
学校設定科目「課題探究III」（理数科 生物•化学コース）

学校設定科目「課題探究III」（理数科 生物•化学コース）
学校設定科目「科学探究」（普通科普通コース理系）
学校設定科目「科学探究」（普通科普通コース理系）
学校設定科目「科学探究」（普通科普通コース理系）
学校設定科目「科学探究」（普通科普通コース理系）

資料8 本文中に掲載したル—ブリック・検査用紙一覧（掲載した物のみ）

p． 30 学校設定科目「プレゼンテーション\＆ディスカッション」
Presenting a Scientific Article ルーブリック
p． 544 つの力（科学的探究力，人間力，表現力，国際性）の伸長度調査（Can－do 形式）
p． 55 E I（Emotional Intelligence）の概念を用いた「探究力」検査

資料9 教材ワークシート集

「理数数学特論」
実験 屈折の法則の検証
（1）実験内容
半球レズにレーザー光を入射させて入射角と屈折角を測定することにより，屈折の法則を検証する．
実験結果から，アクリルの屈折率 n を求める．
（2）実験方法
1．回転台に半球レンズをのせて，回転台と支持台の赤線を合わせる（入射角を 0 にする）
\quad 半球レンズは，その平面部が 90° のラインと一致するように置く，
2．レーザーポインターの「Line」ボタンを押して，半球レンズの中心にレーザー光をあてる．
レーザー光の経路が赤線上にはつきり映るように，ポインターを置く位置を調整する．
3．回転台を回転させて，入射角 i が $15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}$ の場合について，屈折角 r を測定する．

[^1]最小作用の原理
\[

$$
\begin{aligned}
& \text { "自然界の様々な現象では, ある量が最小値をとる状態が実現する" } \\
& \text { 「ある量 (の䅡分) が最小値 (停留値) をとる」といら形に表された原理は, } \\
& \text { "最小作用の原理 "と㭔ばれる. } \\
& \text { 自然界の法則の中には, 最小作用の原理の形で表現されるものがしばしば存在する. }
\end{aligned}
$$
\]

－光についての最小作用の原理

光はある点から別の点に＿で到達できる経路を進む

[^2]

「課題探究III」

微分方程式で数学モデルをつくる
内容 穴いた容器から水が流れ出すときの水面の高さの時間変化を測定する。実験結果を説明するための数

水流についてのトリチェリの法則

> 円筒状の容器に水が入っている。容器の底近くに孔を空けて水を流出させるとき, 水面の高さは どのような化をするか?
水が流出し始めてからの時間 t と水面の高さ y の関係を予想して，そのグラフの概形を描きなさい。

$\stackrel{y}{4}$

実験 近い部分に小さな孔を空けた円筒状の容器に水を入れる。孔からの水の流出によって低下する水位の
時間変化を測定する。

$$
\begin{aligned}
& \text { リココン栓 } \\
& \text { 水槽 } \\
& \text { - 水槽 } \\
& \begin{array}{l}
\text { 距離センサ メスジ } \\
\text { メスンダー (直径 } 80 \mathrm{~mm} \text {, 側面に空けた孔の直径は } 4 \mathrm{~mm} \text {) }
\end{array}
\end{aligned}
$$

このように予想した理由は？
（1）図のように，水槽の近くにラボジャッキを設置し，そ
の上にメスシリンダーをのせる。側面に空けられている
孔から流出した水が水槽に溜まるようにメスリンダー
2）メスシリンダーに空けた孔の高さまで水を入れる。
スシリンダーの真上に設置する。
4）距離センサ，データロガー，コンピュータを接続して
水位計測用のCapstoneファイル「water．cap」を開く。

リックする。さらに，「今センサの値を 0 にする」をクリ
ックしてこのときの水位を $y=0$ に設定する。
（6）シリコン栓でメスシリンダー側面の穴をふさいでから，距離センサを濡らさないように 1400 mL の
7）画面上の「Record」ボタンをシリコン栓を外すと同時にクリックして測定を開始する。（ボタンをク
実験結果
実験から得
\square
2020 科学探究 1
実験
1．CD（DVD）にレーザー光をあてることによって生じる干渉縞の明線間隔を測定する
（1）実験装置は図のような構成になっている。実験をはじめる前に，実験装置のセッティング
を行う。
•A3グラフ用紙を机上に置き，グラフ用紙の罫線とCD表面が一致するように，L字金具
に固定したCDを鉛直に立てて置く。
・ラボジャッキの上にスリットカバーをつけたレーザーポインターポインターをのせる。
・レーザー光がCD面に適切にあたるように，以下の調整を行う。レーザーポインターの
POINTボタンを押して，レーザー光を出しながら，
（a）レーザー光が，CDの一番高いところの真下（CDの中心線上）に，面に垂直にあ
（b） 0 次の明線がレーザーポインターにまつすぐもどり，かつグラフ用紙にできる 1 次
（2）CD面にあたるレーザー光の輝点の高さ h およびCD面から 1 次の明線までの距離 $x_{1}, ~ 2 ~$ （2）次の明線までの距離 x_{2} を測定する。
（4） （測定結果を用いて，C D の溝間隔を
（4）D D についても同様の測定を行し
2．CDに白色LED光をあてて，CD面に現れる色の配列を観察する
（1）レーザーポインターの代わりにLEDライトを手で持って，CD面から 5 cm 位のところか ら白色光をあてる。
（2）CDを斜め上方から見て，CD面にできる色の配列を観察する。

光の干渉を用いたCDの溝間隔の測定
罝
レーザー光の干渉を用いてCDやDVDの溝間隔を測定する。また，C D に白色光をあてたとき
の色づいてみえることについて考察する。
実験内容
円状に溝が掘られており，この構造が反射型の回折格子になっているためである。光の干渉を利用仕方を観察して，その理由について考察する。方を観察して，その理由について考祭

\square

（1）C D ，D V D にレーザー光をあてたときにできる明線の位置を測定することによって，そ
2）CDに白色のあてたときに見える色の配列の仕方について，観察結果を説明しなさい。
実験レポートを以下のセクションにわけて作成し，課題（1），（2）に答えること。
実験の目的
実験結果（明線の位置データと溝間隔の値）
観察結果（色の配列とそのように見える理由）
CD，DVD
－計算機
छ

準備

$$
\begin{aligned}
& \text { レーザーボインター } \\
& \text { (波長 } 635 \mathrm{~nm}=6.35 \times 10 \\
& \text { ラボジャッキ } \\
& \text { A3 グラフ用紙 } \\
& \text { 曲がり尺 }
\end{aligned}
$$

白色 LEDライト
スリットカバー
－曲がり尺
B 結果と考察
考察（1）活性化エネルギーと結合エネルギーの総和はどちらが大きいか比較せよ。

 が，逆反応の活性化エネルギーは 3 分の1 しか減少していない。正反応の速度のほうが逆反応の速度より大きく増大する」との仮説を立てた。吉田くんに替わって証明を考えよ。

[^3]酵素（触媒）反応における活性化エネルギー
 は，反応速度式（rate equation）において，速度定数（rate constant）k の増大であらわされる。アレ ーニウス（Arrhenius）は1889年に，「速度定数の数値の自然対数が温度によって変化する割合は，下の式のように絶対温度 T の 2 乗に反比例する」ことを見出した。

気体定数 $R=8.31[\mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})]$

左辺の単位は $[/ \mathrm{K}]$ となるので，右辺の E_{a} は $[\mathrm{J} / \mathrm{mol}]$ の単位を持つ定数であり，活性化エネルギー $\frac{\Delta \log _{e} k}{\Delta T}=\frac{E_{a}}{R T^{2}}$ （activation energy）とよばれている。
$\frac{d \log _{e} k}{d T}=\frac{E_{a}}{R T^{2}} \quad$ の両辺を T で積分すると $\quad \log _{e} k=-\frac{E_{a}}{R T}+C \quad \cdots \cdots(1)(C$ は積分定数 $)$
となり，速度定数の数値の自然対数を $\frac{1}{T}$ に対してプロットすると直線（その傾きはー $-\frac{E_{a}}{R}$ ）

数 k が（ア）\square くなり，また，触媒によって ${ }^{(2)}$ 活性化エネルギー E_{a} を小さくすると，速度定数 k は（1）\square くなる。結果いずれの場合も，反応速度は（汤 \square くなることがわかる。
前回の実験で求めた酵素カタラーゼ及び無機触媒（ ）を用いた際の，温度 T_{1}, T_{2} における
速度定数 k_{1}, k_{2} の実験データから，活性化エネルギー E_{a} を求めよ。
$=2.718 \cdots \log _{e} x=\frac{\log _{10} x}{\log _{10} e} \fallingdotseq \frac{\log _{10} x}{0.434} \fallingdotseq 2.3 \log _{10} x \quad$ の関係が成り立つ。

温度（触媒）	温度 $T \quad[\mathrm{~K}]$	温度の逆数 $1 / T$	速度定数 k	対数値 $\log _{e} k$
1．低温（酵素）				
2．高温（酵素）				
1．低温（ ）				
2．高温（ ）				

$※$
［感想欄］

実験日	月			
班員	組	番	氏名	班

酵素（触媒）のはたらき具合を表すミカエリス定数 K_{m}
生体内で起こる多くの化学反応において酵素（enzyme）とよばれるタンパク質が触媒（catalyst） としてはたらいている。酵素 E は基質（substrate）S と結合して，酵素一基質複合体 E•S となり，生成物 P を生じる。またこのとき酵素一基質複合体から酵素と基質に戻る反応も起こる。
レオノール・ミカエリス（Michaelis）とモード・レオノーラ・メンテン（Menten）は，酵素反応を解析し，分解反応の反応速度 V に関するミカエリス・メンテンの式を導いた
ここで[S]は基質浱度

$$
V_{\max } \text { は基質濃度が無限大のときの反応速度 }
$$ $K_{\mathrm{m}}+[\mathrm{S}] \quad K_{\mathrm{m}}$ はミカエリス定数

$V=\frac{V_{\text {max }}}{K_{\mathrm{m}}+[\mathrm{S}]}$

•基質瀑度が低い $\left([\mathrm{S}] \ll K_{\mathrm{m}}\right)$ ときには \cdots
•基質温度が高い $\left([\mathrm{S}] \gg K_{\mathrm{m}}\right)$ ときには \cdots
となることがわかる。
ミカエリスとメンテンは次のような機構を考えた。
（1）酵素一基質䄍合体 $\mathrm{E} \cdot \mathrm{S}$ は，酵素 E と基質 S の速い平衡で形成される。
（2）$\cdot \mathrm{S}$ は， 1 次反応で分解してもとの E と生成物 P が生じる
$\mathrm{E} \cdot \mathrm{S} \xrightarrow{k_{3}} \mathrm{E}+\mathrm{P}$

$\mathrm{E}+\mathrm{S} \underset{\underset{2}{*}}{\stackrel{k_{1}}{\rightleftarrows}}$

$\underset{{ }_{2}}{\rightleftarrows} \mathrm{E} \cdot \mathrm{S}$

（2）E•S は， 1 次反応で分解してもとの E と生成物 P が生しる
それぞれの反応速度を $v_{1}, ~ v_{2}, ~ v_{3}$ とすると

今回，基質（substrate）S として過酸化水素（hydrogen peroxide）を用い，分解反応の反応速度 V と基質濃度［S］との関係を実験により決定し，ドライイーストに含まれる酵素（enzyme）であるカタ ラーゼのミカエリス定数 Kmの値をもとめる。

実際に基質温度［S］を無限に上げて $\mathrm{V}_{\text {max }}$ を測定することは困難であるが，（8）式よりVは全酵素濃度 $[\mathrm{E}]_{\mathrm{T}}$ にも比例することがわかる。そこで実験では［S］の最大濃度を 10% までとし，全酵素濃度 $[E]_{T}$ を調整したらえで反応速度を測定し，理論的に大きな［S］での反応速度を求めることとする。 また，触媒（catalyst）に無機物質である酸化鉄（III）と用いた場合と比較する。

考察（4） 2.0 mL 酸素の発生により，分解した $\mathrm{H}_{2} \mathrm{O}_{2}$ の物質量はいくらか。反応式の係数より。 ${ }^{\mathrm{ow}} \overline{\mathrm{e} \cdot 0 \mathrm{~T} \times}$
混合溶夜の体積は $1+5=6 \mathrm{~mL}$ とする。
考察（3） 2.0 mL 酸素の物質量は何 ミ $\mathrm{m}^{\mathrm{m}} \mathrm{mol}$ か。
気体定数 $=8.3 \times 10^{3} \mathrm{~Pa} \cdot \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{K})$ ，気体温度は＿＿${ }^{\circ} \mathrm{C}$（室温）とする。
考察（4） 2.0 mL 酸素の発生により，分解した $\mathrm{H}_{2} \mathrm{O}_{2}$ の物質量はいくらか。反応式の係数より
考察（5）平均の反応速度 \bar{v} を求めよ。ただし，反応溶液は $1+5=6 \mathrm{~mL}$ とする。
（s．T）／［oum
（
$\bar{v}=\frac{\text { モル湄度の変化量 }}{\text { 反応時間 }}=\frac{\Delta C[\mathrm{~mol} / \mathrm{L}]}{t[\mathrm{~s}]}=\frac{\Delta n[\mathrm{~mol}]}{t[\mathrm{~s}] \times V[\mathrm{~L}]}$
考察（6）表計算ソフトを利用しミカエリス定数 Km を求めよ。

D 結果と考察

考察（1）溶夜 A 5.0 mL 中に含まれる $\mathrm{H}_{2} \mathrm{O}_{2}$ は何 mol か。溶夜の密度は $1.0 \mathrm{~g} / \mathrm{cm}^{3}$ とする。

和元年度 課題探究II探究力テスト 問題 2020／1／15風力発電は，石油や石炭燃料による火力発電に代わる，エネルギー供給源の一つになるだろらと一般に考えられている。風力発電の風車に風があたると，その力で羽根が回転する。羽根の回転が，装置にある発電器を稼働して電力を発生させる。以下の問いに答えなさい。
（1）下のグラフは，異なる 4 か所での 1 年を通じた平均風速を表したものである。風力発電機 を設置するのに最も適している場所はどこか。

（2）風が強いほど風車の羽根は速く回り，より多くの電力が発生する。下記は実際に設置され ている風力発電装置の 4 段階の作動条件を述べたものである。
－相の回軦楀け増えない
風速が V_{2} 以上に達すると，女全面揀が V_{2} に達すると，電力は最高値 W に達する。
風速が V_{3} 以上達すると，達すると，羽根は回転を停止する。
－次のグラフのうち，これらの作動条件における風速と電力の関係を最も適切に表している ものはどれか。
\oplus

班	研究テーマ	担当（教科）				
1	数当てゲームの論理的最適解の考察	田賀	大地	（数学），宮村		（英語）
2	行列を用いた文字認識	宮田	浩史	（数学），松原	郁男	（英語）
3	日本の絵に隠れた比率	高田	宏規	（数学），馬場		（英語）
4	ベナール対流の発生条件と流動速度の関係	木村光	郎	（理科），宮村		（英語）
5	結露量の物理的手法を用いた測定と防止法の研究	藤田	嵩治	（理科），福岡	輝樹	（英語）
6	可燃性気体の燃焼による爆発力の研究	小住	史朗	（理科），福岡	輝樹	（英語）
7	天然素材を使った接着剤の研究	入道	正行	（理科），馬場		（英語）
8	ユーグレナの金属イオンによる運動抑制	東野	真之	（理科），宮村		（英語）
9	ユズの抗酸化作用の有無についての研究	政浦	嘉恵	（理科），松原		（英語）
10	雪の結晶をつくる核の研究	安田	誠二	（理科），福岡		（英語）

教科名：「自然と科学」 科目名：「課題探究」 第 2 学年普通科• 1 単位
＜平成 29 年度＞（理系）

分野・クラス・班	研究テーマ	担当者
数2401	円の作図法について	山際
数2402	RSA 暗号について	山際
物2403	紙飛行機の飛行特性	木村
物2404	棒磁石にはたらく磁力の距離依存性について	木村
物2405	スーパーボールの反発係数について	木村
化2406	君のタンパク質を食べたい	㘔本
化2407	驚き！！タンパク質ってこんなんだった！？	㘔本
化2408	空前絶後の炎色反応！！	赛本
数2501	ランダムウォーク	松島
数2502	1 次分数変換	松島
数2503	四角形の面積	松島
物2504	ダイラタンシー	北

班	研究テーマ	担当（教科）			
1	海岸線とフラクタル	笹谷 昌弘	（数学），松原	郁男	（英語）
2	まわり将棋	中谷 宗雅	（数学），宮村	景子	（英語）
3	鳴き砂の物理的特性と発音メカニズム	木村光一郎	（数学），加藤	秀雄	（英語）
4	過冷却現象の解析	塩田 高基	（理科），中嶋	茂樹	（英語）
5	液面で浮上する液滴の安定性について	木村光一郎	（理科），宮村	景子	（英語）
6	天然色素を用いた万能pH指示薬の研究	入道 正行	（理科），加藤	秀雄	（英語）
7	コロイド結晶膜における構造色の研究	新保 宏樹	（理科），中嶋	茂樹	（英語）
8	雑草を材料にして作成した紙の吸水性	東野 真之	（理科），加藤	秀雄	（英語）
9	小松高校におけるゼニゴケの生育環境の研究	政浦 嘉恵	（理科），松原	郁男	（英語）
10	ナミテントウの変態期間における記憶保持について	政浦 嘉恵	（理科），宮村	景子	（英語）

第 2 学年理数科•2単位
「課題探究 II」

班	研究テーマ	担当（教科）
1	限定じゃんけんと普通のじゃんけんの違い	中田 成彦（数学），小坂 敦子（英語）
2	n 個の正方形の面積の和を2 等分する直線の本数	東 篤洋（数学），旭 有香（英語）
3	紙飛行機	中谷 宗雅（数学），高 鮎美（英語）
4	ボールの空気圧と反発係数の関係	北 浩也（理科），小坂 敦子（英語）
5	減衰振動における空気抵抗力の性質	木村光一郎（理科），旭 有香（英語）
6	䋃話の共鳴振動数と張力の変化による音の伝達について	木村光一郎（理科），高 鮎美（英語）
7	小松高校におけるチョークの再生	土屋 浩一（理科），小坂 敦子（英語）
8	特定の周波数の音により抑制される植物の生有	東野 真之（理科），旭 有香（英語）
9	コウジカビを用いた生分解性プラスチックの分解	政浦 嘉恵（理科），高 鮎美（英語）
10	ぬか漬けによるナスの皮の変色を防ぐ	安田 誠二（理科），旭 有香（英語）

 ＜平成29年度＞担当（教科）
山村 あかね（数学），旭 有香（英語） $\begin{array}{ll}\text { 山村 あかね（数学），旭 有香（英語）} \\ \text { 中谷 } & \text { 宗雅（数学），旭 有香（英語）}\end{array}$松島誠一郎（数学），旭 有香（英語）木村光一郎（理科），中嶋 茂樹（英語）木村光一郎（理科），中嶋 茂樹（英語）木村光一郎（理科），中嶋 茂樹（英語）

 —（枓俈）莀时

班	研究テーマ	担当（教科）		
1	証明の意義と公理系から眺める数学	塩屋 千学	（数学），松原	郁男（英語）
2	チェック柄の印象の移り変わり	中谷 宗雅	（数学），宮村	景子（英語）
3	バットの振動と芯の位置について	木村光一郎（数学），宮村 景子（英語）		
4	ライデンフロスト効果の解析とその応用	塩田 高基	（理科），西	佳織（英語）
5	栄電話の共鳴振動数に影響をおよぼす要因について	木村光一郎（理科），松原 郁男（英語）		
6	金属イオンとアリザリンS	小住 史朗（理科），宮村 景子（英語）		
7	ルミノール反応による発光の効率	石川 雄也	（理科），小坂	敦子（英語）
8	アボカドが生物に与える効果の検証	政浦 嘉恵	（理科），松原	郁男（英語）
9	ゴキブリの嗜好性による学習効果の測定	政浦 嘉恵	（理科），西	佳織（英語）
10	金属イオンによるゾウリムシの操作	東野 真之	（理科），小坂	敦子（英語）
11	偏西風波動の 3 次元的解析	安田 誠二	（理科），小坂	敦子（英語）

			$\begin{aligned} & \text { 货 } \\ & \hline \end{aligned}$			$\frac{\stackrel{\rightharpoonup}{3}}{k}$	$\frac{\stackrel{i}{3}}{\stackrel{y}{k}}$	$\underset{\substack{\text { 異 }}}{ }$			\＃	\＃	亦	$\stackrel{\stackrel{\rightharpoonup}{*}}{k}$	$\frac{\stackrel{\rightharpoonup}{*}}{\stackrel{\prime}{k}}$		$\frac{\text { 哭 }}{\frac{1}{4}}$	$\frac{\text { 哭 }}{\frac{\sqrt{1 / 2}}{2}}$		$\frac{\frac{162+1}{4}}{4}$	$\frac{\frac{\pi}{6}+4}{4}+1$	$\frac{4 H}{6}$	$\frac{H}{\vdots}$	$\frac{\stackrel{H}{C}}{\vdots}$	$\begin{aligned} & \frac{K}{4} \\ & \text { 热 } \end{aligned}$	$\underset{\sim}{K} \underset{\sim}{K}$	$\frac{14}{4}$				田	冨
	$\begin{aligned} & \text { 绿 } \\ & \vdots \\ & \vdots \\ & \text { 栄 } \end{aligned}$										$\begin{gathered} 4 x \\ \sqrt{\prime \prime} \\ 6 \\ 1 \\ 1 \\ x \\ 1 \\ 3 \\ 2 \end{gathered}$	$\begin{gathered} 1 \\ 1 \\ i s \\ -\lambda \\ i x \\ i n \\ \vdots \\ i x \end{gathered}$		パイプ中を伝わる音速と開口端補正の測定																		
		$\begin{aligned} & - \\ & \sqrt{3} \times \\ & \text { 検 } \\ & 10 \\ & \mathrm{~N} \end{aligned}$		$\begin{aligned} & - \\ & \substack{* \\ \cdots \\ N \\ N \\ N} \end{aligned}$	$\begin{aligned} & -7 \\ & \sqrt{4} \\ & 7 \\ & \sim \\ & N \end{aligned}$	$\left\lvert\, \begin{gathered} N \\ N \\ N \\ \sim \\ \sim \\ N \end{gathered}\right.$	$\begin{aligned} & \infty \\ & \infty \\ & \sim \\ & \sim \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & -1 \\ & N \\ & 10 \\ & N \\ & N \end{aligned}$	$\left\lvert\, \begin{gathered} N \\ N \\ 10 \\ N \end{gathered}\right.$	$\begin{aligned} & \infty \\ & \infty \\ & 10 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & -7 \\ & \text { N } \\ & \text { N } \\ & 0 \\ & N \end{aligned}$	$\left\|\begin{array}{l} N \\ W \\ 0 \\ N \end{array}\right\|$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \sim \\ & \sim \end{aligned}$	$\left\|\begin{array}{l} -1 \\ N \\ N \\ N \end{array}\right\|$	$\left\lvert\, \begin{aligned} & N \\ & N \\ & N \\ & \sim \\ & \sim \end{aligned}\right.$	$\begin{aligned} & \infty \\ & \sim \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \underset{y}{2} \\ & \underset{\sim}{2} \\ & N \end{aligned}$	$\begin{aligned} & N \\ & \underset{\sim}{\tau} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & -1 \\ & \pm \\ & 10 \\ & N \end{aligned}$	$\begin{gathered} N \\ \nu \\ \nu \\ \omega \\ N \end{gathered}$	$\left\|\begin{array}{c} \infty \\ \underset{\sim}{2} \\ i 0 \\ \infty \end{array}\right\|$	$\begin{aligned} & - \\ & \nu \\ & e \\ & \omega \\ & N \end{aligned}$	$\begin{aligned} & \sim \\ & \underset{\sim}{v} \\ & \sim \\ & \sim \end{aligned}$	$\begin{array}{\|l\|} \infty \\ \perp \\ \vdots \\ \omega \end{array}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{N}{N} \\ & N \end{aligned}$	$\begin{aligned} & N \\ & N \\ & N \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\sim} \\ & \sim \end{aligned}$	$\begin{aligned} & - \\ & H \\ & N \\ & N \\ & o \\ & N \end{aligned}$	\sim H H \sim 0 \sim	$\begin{aligned} & \infty \\ & H \\ & N \\ & \sim \\ & \infty \\ & \sim \end{aligned}$	7 1 10 7 N	N L 10 H N

分野・クラス・班	研究テーマ	担当者
22 英 1	英語の Love song から分る海外の恋愛感	松原
22 英 2	映画翻訳と直訳の違い	松原
22 英 3	How to use Instagram in America？	松原
22 国 1	石川県で多い名字	北川
22 国 2	方言～地域ごとの傾向と背景～	北川
22 地歴 1	伊藤博文を暗殺したのは本当に安重根であるか。またなせ殺そうとしたのか	西村
22 地歴 2	どうやったら外国人観光客が増えるのか	西村

物2505	ホバークラフト	北
物2506	超伝導	北
化2507	スーパー蓄電池の開発	土屋
化2508	黒板の粉から純白のチョークをつくる	土屋
化2509	最高のレーヨンをつくる	土屋
数26011	記念祭模擬店の理想的な金額設定の方法	中谷
数 2602	記念祭模擬店の理想的な金額を定める公式	中谷
物2603	摩擦係数の洗剤に関するポテンシャル	塩田
物2604	Relation of book and friction	塩田
化2605	銅アンモニアレーヨンの合成	小住
化2606	セッケンと合成洗剤の比較	小住
化2607	いろいろな電池の作成	小住
生2608	乳酸菌の様々な p H 条件下における生育についての研究	政浦
生2609	納豆菌による生分解性プラスチック作成についての研究	政浦
生2610	納豆菌による水の浄化についての研究	政浦
数27011	ビンゴになる確率	山村
数2702	石川県を描く	山村
物2703	メガホンの形状と音の伝わり方の関係	北
物2704	ブーメラン	北
物2705	紙飛行機	北
化2706	炎色反応の原理とロウソクでの応用	新保
化2707	配合量•温度条件の違いによるスライムの性状比較	新保
生2709	血液の性質についての研究	政浦
生2710	洗濯用洗剤の抗菌効果の検討	政浦

利㽗		\＆函时 8 乙
累：		
粠田		士函開 8 亿
田楽		\＆国\＆
田桃		て国\＆
田㐘		［国\＆ Z
f⿻丷木大⿱日十	 	З 蚉 \＆
f⿻丷木大⿱日十⿱口⿱中⿰㇀丶冂土		I卒\＆
米早		
GIE		\＆国て
2GIE		て国て
UIE		［国で
田		て市て
田 4		I親を
星示时	二ー 㤝姓	

22 地歴3	ディズニーランド・シー，ユニバーサルから考える新しいテーマパーク	西村	27 数 1	印象の良い話し方について	中谷
23 英1	日本とアメリカのCMの違い	垣内	27 物 1	ダイラタンシー現象と落下との関係性	安田
234 英2	日本とアメリカの学校生活の違い	垣内	27 物 2	溶液によるミルククラウンの形の変化	安田
23 英3	英語の方言による国の性格の違い	垣内	27 物 3	表面張力の測定	安田
234 国1	百人一首の恋の歌から，昔と現代の人の恋愛感の違いを読み解く	高田優	27 化 1	エン or サン ？	新保
23 国2	子供に聞かせるグリム童話は真（原作）であるべきか，偽（変え られたもの）であるべきか	高田優	27 化 2	ボルタ電池の研究	新保
234 国3	言語の比較	高田優	27 化 3	凝固点降下の研究	新保
234 地歴 1	これからも金沢への観光客は増え続けるのか	中野	267 生 1	食材に存在するアミラーゼ活性について	政浦
234 地歴2	東日本と西日本の境はどこか	中野	267 生 2	コラーゲン含有量による弾力の違いについて	政浦
234 地歴3	世界経済	中野	267 生3	サメの歯の大きさと食性の関連性について	政浦
234 保体 1	身体の柔軟性が運動に影響するか	山田	（文系）		
234 保体2	聴こえてくるものが運動パフォーマンスに与える影響	山田	クラス・班	研究テーマ	担当者
＜令和元年度＞（理系）			22 英1	Can English that we learn in school be understood in every English speaking country．	旭
グループ	研究テーマ	担当者			
24 数 1	パスワードの安全性	松島	22 英 2	日本とアメリカのお笑いのツボの違い	旭
24 数 2	もっとも見やすい座席は？	松島	22 英 3	マンガにおける翻訳の違いと傾向	旭
			2 2国1	石川県の名字と地域の関連性	田村
24 数 3	どの場所がすぐ埋まる？	松島	22 国2	方言は消えるのか？	田村
24 物 1	空気砲の穴と威力の関係	室田	22 地 1	手取フィッシュランドをもつと人気にするには？	中野
24 物 2	紙飛行機	室田	22 地 2	ブラック企業はどこから？	中野
24 物 3	紙風船のしくみ	室田	22 地 3	大人気商品にかわる新商品を開発しよう！	中野
24 化 1		至田	23 英 1	EMBLEM ～日本と西洋の紋章の違いから見える宗教的背景～	島村
24 化 1	ゼラチンとフルーツの相性	入道			
24 化 2	レーヨンの研究	入道	23 英 2	CM＂あのCMが頭から離れない！＂	島村
24 化 3	漂白の研究	入道	2 3英3	理想のテーマパークをつくろう	島村
25 数 1	映画館でどの席が一番みやすいか	山村	2 3国1	視聴者を引きつける有吉弘行さんの魅力	清水
		山村	23 国2	高校生の会話•S N S における死語になる語の共通点	清水
25 物 1	プラスチック板による光の吸収	木村	23 地 1	A I による職業代替	油野
25 物 2	空気抵抗がはたらく物体の放物運動	木村	23 地 2	天皇の今までとこれから	油野
25 物 3	ボール紙による音の吸収	木村	23 体 1	Eスポーツはスポーツかどうか	中村司
		十屋	＜令和 2 年度＞（理系）		
25 化 1	What is すらいむ	土屋	グループ	研究テーマ	担当者
25 化 2	再生チョーク実現可能	土屋	24 数 1	正多角形の作図と考察	荒納
25 化 3	スーパー蓄電池の開発	土屋	24 数 2	じゃんけんの勝率を高めるグループ分け	荒納
245 体 1	エナジードリンクが運動パフォーマンスに与える影響	野崎	24 物 1	パラシュートの落下時間と正確性について	木村
26 数 1	6 人の問題とその一般化	笹谷	24 物 2	輪ゴムの弾性力について	木村
26 物 1	らちわの形のちがいからわかったこと	室田	24 物 3	スーパーボールのバウンド	木村
26 物 2	［検証］ペットボトルを救ってみた	室田	24 化 1	pH 指示薬について（黒豆）	石川
			24 化 2	割れないシャボン玉の作り方	石川
26 物 3	靴のウラの穴と摩擦の関係性	室田	25 数 1	Σ（k4 乗），Σ（ k 5 乗）の計算	塩屋
26 化 1	濃硫酸の脱水作用について	小住	25 物 1	すっ飛びボール	藤田
26 化 2	保湿クリームの研究	小住	25 物 2	コインの落下	藤田
26 化 3	チンダル現象について	小住	25 物 3	繧話の振動数	藤田

教科名：「人文科学」 科目名：「人文科学課题研究 I 」
第 2 学年普通科人文科学コース・2単位

班	研究テーマ	担当（教科）
1	光源氏の恋愛観	森田 久恵（国語）
2	詩から読み取る，萩原朔太郎の結婚前後の心情の変化について	江尻 祐治（国語）
3	女性ヒーロー映画がなぜ今ブレイクしているのか	中嶋 茂樹（英語）
4	海外の曲が日本で売れるには？	森 春菜（英語）
5	アメリカ人と日本人のお笑いの比較	松原 郁男（英語）
6	5年後流行の中心となるSNSを予想する	中野真深子（地歴公民）
7	古事記の非道な行いから見る日本人の精神性	油野 聡子（地歴公民）
8	関ケ原の戦いで西軍はどらしたら勝てたか	永野 智則（地歴公民）

＜平成 30 年度＞

班	研究テーマ	担当（教科）
1	私たちは「敬」から逃れられない！？	長谷川 励（国語）
2	運動すると記憶に効果は現れるか	北川 梨絵（国語）
3	北方領土返還について	西村 翼（地歴公民）
4	これから来るのは○○世代！？	菅村 吉晃（地歴公民）
5	都市を発展させるために（小松市の発展）	喜作 仁（地歴公民）
6	人の心のつかみ方～歴代アメリカ大統領就任演説に見る～	松原 郁男（英語）
7	日本にI Rは必要か否か	宮城島 優（英語）
8	$\begin{array}{l}\text {＂Formula for a Great Hit＂－－－The findings from comparing } \\ \text { fairy tales with animated movies－－}\end{array}$	西 佳織（英語）

班	研究テーマ	担当（教科）
1	複雑化するいじめへの対応	小林樹実（地歴公民）
2	彼らはなぜ迫害されたのか	大茂祥平（地歴公民）
3	QOLの向上に向けてのテレワークの提案	高山良太（地歴公民）
4	平安時代の女性の死生観	江尻祐治（国語）
5	宮沢賢治の作品に影響を与えたもの	能美 仁（国語）
6	日米間の言語的コミュニケーションの違い	中村悦子（英語）
7	小松高校生のスピーキングカ upのためにできること	福岡輝樹（英語）
8	伝わる「ジャパニーズイングリッシュ」	島村千佳（英語）

25 化 1	ナナイロキャンドルをつくる	土屋
25 化 2	日焼け止めの研究	土屋
25 化 3	石鹸をつくる	土屋
245 体 1	ハンドボール投げに関する一考察	中村司
26 数 1	身の回りの確率	栗田
26 物 1	板の重心	三藤
26 物 2	卵を割らずに落とす	三藤
26 物 3	流水による力	三藤
26 化 1	銀鏡反応について	小住
26 化 2	香料の研究	小住
26 化 3	洗剤の比較	小住
27 数 1	The probability of SUGOROKU	宮田
27 数 2	四色定理	宮田
27 物 1	テンセグリティ構造	塩田
27 物 2	クリップモーターカーを作ろう	塩田
27 物 3	バナナトラップを成功させるには？	塩田
27 化 1	最強シャボン玉をつくろう	久間
27 化 2	身の回りの食材からできる電池	久間
27 化 3	ダイラタンシー現象	久間
267 生 1	TLC による光合成色素の分離	東野
267 生 2	原生生物に対する金属イオンの影響	東野
267 生 3	ゾウリムシの酸•塩基に対する走性	東野

（文系）		
クラス・班	研究テーマ	担当者
22 地1	日本とギリシアの神様の違い	高山
22 地2	SNS の効果	高山
22 地3	アメリカの黒人差別の変連	高山
22 国1	若者言葉はできるべくしてできた！	長谷川
22 国2	平安時代のモテる定義とは	長谷川
22 国3	犬は「びよ」と鳴いていた？	長谷川
22 英1	ロックの今後を予想する	中村
22 英2	The Future of the Movies	中村
234 地1	昔の世界経済の研究と経済のこれから	大茂
234 地2	歴史においての女性の地位の変動	大茂
234 地3	石川に観光客を集めるための戦略	大茂
234 国1	小松高校生が思う昔の恋愛のイメージとリアル	江尻
234 国2	レオニレオニが本当に伝えたかったこと	江尻
234 国3	匂いを表すオノマトペが少ないのはなぜか	能美
234 国4	方言のアクセサリー化	能美
234 英1	THE GREATEST SHOWMAN から見る表現や考え方の違い	松原
234 英2	システム英単語は大学受験に役立つのか？	松原
234 英3	リメイク映画作品から見る日本とアメリカの価値観の違い	松原
234 体1	世界的な出来事が高校生の部活におよぼす影響	野崎

石川県立小松高等学校	（e）

12 月 17 日（日）~ 20 日（水）の 3 泊 4 日の行程で，本校から理数科 2 年生 25 名と校長，引率教諭 2 名
が，韓国大田（デジョ）科学高校を訪問し，科学交流を行いました。

10：00 に小松空港に集合しましたが，飛行機のトラブルで出発が 3 時間以上遅れてしまいました。でも生徒た
ちはその待ち時間を利用して明日のポスター褜の練習などを行いました。その後，飛行機，バスなどを乗り継
いで韓国•大田市に無事到着しましたが，遅い時間だったので，みんなで夕食をとったあとそのままホテルで休
みました。

－18日（月）

午前は大田科学高校で科学交流を行いました。大田科学高校には小松高校のほかにロシア航空中等教育学校の
生徒たちも訪問していて， 3 校による英語でのポスター発表会が行われました。小松高校はそこで課題研究「危生徒たちも訪問していて， 3 校による英語でのポスター発表会が行われました。小松高校はそこで課題研究「危
険指数を作成する」「ペットボトルロケットの飛行解析」「廃妻物とシイタケ菌床を利用した電気エネルキーの獲得」と「小松高校の学校紹介」のポスター発表を行いました。また，大田科学高校と小松高校との共同研究であ
る「日本と韓国の伝統的な船の形の比較と，その最適化された形の考察」「伝統的建築物の支柱と，現代的建築物への応用について」のポスター発表も行われました。午後は大田科学高校の生徒といっしょに韓国先端科学技術大学や韓国電子通信研究院を見学し，研究の様子や
情報通信などについての講義を受けました。 －19日（火）－
韓国高速鉄道（KTX）で大田駅を出発してソウル駅に向かい，国 －20日（水）－
早朝 6：00 にソウル市内のホ テルを出発し，仁川空港から小
松空港を経て，12：00 に無事小松空港を経て，12：00 に無事小
松高校に帰ってきました。
－日本物理学会 Jr．セッションが，3月23日（金）に東京理科大学野田キャンパスで行われ，本校から「小球
の衝突とクレーターの形成」と「ペットボトルロケットの飛行解析」の研究グループが参加してポスター発 の衝突とクレーターの形成」と「ペットボトルロケットの飛行解析」の研究グルーブが参加し
をする予です。 の衝突とクレーターの形成」と「ペットボトルロケットの飛行解析」の研究グループが参加してポスター発
をする予定です。

1 月 8 日（月•祝），石川県勤労者福祉文化会館にて日本数学オリンピック予選がおこなわれました。本校か
隹 らは， 1 年生 7 名， 2 年生 9 名が参加し難問に挑戦しました。その結果，理数科 2 年生の中道晃平さんが見事に
選を過して， 2 月 11 日（日•祝）に富山県民会館で行われる本選に進みました。

今後の予定（学会でのポスター発表なと）

－1年普通科の学校設定科目「探究基礎」で行った基硙課題研究のポスター発表会が，2月15日（木）に1組 ～7組の各教室で行われます。ポスター発表会では発表者と視聴者にわかれて，発表者は 5 分以内で研究内容 －2年理数科の学校設定科目「課題探究II」で行った課題研究の英語での口頭発表会が，3月14日（水）に本校の視聴覚室で行われます。本校のALT2名と他校のALT5名に発表をみてもらい，質疑応答と講評をし

－ジュニア農芸化学会 高校生による研究発表会が，3月17日（土）に名城大学天白キャンパスで行われ，本
校から「コウジカビによる生分解性ブラスチック分解の制御」の研究グループが参加してポスター発表をする
予定です。

会偈の機子

亞な踖てる水

＋

11．上

に取り組んでくれました。

[^4]乹陶芸館」で九谷焼の絵付け体験を行いました。また， るさと交流センターさらい」にて合同の合宿を
雨の静電気を用いた環境発電の技術の探究」と
 さ工業大学で行ら「工学部における実験セミナー」
きれいに焼き上がった九谷焼の皿を受け取り，帰
九谷滰絵付1J体騟

？

 しかも美しい橋づくり」をテーマにした研修
橋の製作を通して土木工学の基礎を学びま ヨンを行いました。また橋の
－
番近いかを競い合いました。
 でブレセ日韓の合同の
ニケーション能
会場の機」

[^5]4

C5 5n C S A A5

居川组立小松高等学校

？

海洋生物採隻ウ二の人工授鈢と発生観察
ウ二の発生観蔡（前日の続き） ＜実習内容＞ ＜実習内容
$7 / 27$実施さ

浣

 ート「輪ゴムを引く力と伸びの関係を調べてみよう」と7月8日（日）に石川県立金沢泉丘高等学校で行われた理論問題コンテストの結果， 3 年生の中道晃平さんが第 1 チャレンジを通過して第 2 チャレンジ（全国大会）
 9 名と 2 年生 4 名が挑戦しました。
7 月 16 日（月•祝）金沢大学角間キャンパスで，化学グランプリの一次選考が行われ，本校からは 3 年生 5
名， 2 年生 4 名， 1 年生 1 名が挑戦しました。

 9 月 26 日（木）$~ 27$ 日（金）に理数科 1 年生を対象に関東サイエンスツアーを行いました。「第一線
の研究者•技術者等から直接講義や実習指導を受けることにより科学技術に対する興味•関心を高め，学ぶ意欲を育てる」ことを目的に，今年度は国立科学博物館，東京大学本郷キャンパス，東京工業大学すずかけ台

$$
\text { 上野駅 } \rightarrow \text { 小松駅 (北陸新幹線利用) }
$$

この関東サイエンスツアーでは事前に研修先について調べるなどの予備学習を行ってきました。そのため
生徒たちはどの研修の際にも興味•関心をもって臨み，積極的に質問して新たな発見をすることができまし生徒たちはどの研修の際にも興味•関心をもって臨み，積極的に質問して新たな発見をすることができまし刺激となりました。
夜の本校OB B 学生の先䩀たちとの懇談会では，充実した高校生活を送るための心構えや大学生活につ

？

《公開授業》
化学分野：発泡スチロール球を容器に詰めることで規則的配列の一例として体心立方構造を見つけ，その単位

サイエンス・フェスタ2019inザイエリスヒルズごまつ
装等

石川県SSH坐從研究発表表会

[^6]

（3）まわりゆ脬相

（8）海少線とうラクタル

いしかわ高较綒学グランプリ

午前に筆記競技，午後に実技競技を行った結果，本校の 2 年生チーム（チーム名
「 O O P 1 」）が筆記競技 1 位，実技競技 1 位となり，見事，総合優勝しました。
おめでとうございます！！チーム「 001 」は 3 月 20 日（金）から埼玉県さい
たま市のソニックシティとサイデン化学アリーナで行われる科学の甲子園全国

 石川農立小松高等学校	（e）

乐 9^{3}

「生物野外実習」は，7月23日（木•祝）に「のと海洋ふれあいセンター」で行われました。今年度は新型
コロナウイルス拡防止のため石川県が出しているがイドラインに沿って実施したので，日帰りでの実習と
なりました。この実習の事前学習として，7月3日（金）の理数生物の時間に実習の準備や実習中の注意点など
について学びました。
23 日の午前は，まず，のと海洋ふれあいセンター内で職員の東出さんから「海の危険生物について」の講義 を受けたあと，近くの海に入り海洋生物採集を行いました。感染防止対策のため例年のようにウェットスーツを て海洋生物を採取しました。午後は，のと海洋ふれあいセンターの実験室で，午前に採取したウニを人工受精さ せ，発生の様子を顕微鏡で観察しました。また発生観察の合間に，採取したヒトデや海藻などの海洋生物の䫀察•同定およびスケッチも行いました。今回のウ二の発生実習は 1 日だったこともあり 8 細胞期までしか䂓察できま
せんでしたが，生徒たちはすべての実習に熱心に取り組み，また全部の班が発生の観察に成功することができた 8月3日（月）には事後学習として，学校でウニ発生段階実験材料を使って 8 細胞期からプルテウス察を行いました。期までの

7 月 11 日（土）サイエンスヒルズこまつにて，本校の生物部と理化部の生徒が合同で，近隣の小学生を対象
に毎年恒例の実験教室を開催しました。今年は新型コロナウイルス感染拡大防止で密になることを避けるために
 の実験」「重曹で入浴剤をつくろう」「重曹とクエン酸を混ぜるとどうなる？」「ホワイトボードマーカーで書い

11月3日（火•祝），「小松高校オープンスクール」の日 に，理数科 2 年生の学校設定科目「課題探究II」の課題研究校内発表会が行われ，新型コロナウイルス感染症による休校 あけの 6 月から約半年間取り組んだ研究について口頭発表
を行いました。審査員として，金沢大学から佐藤政行先生，伊藤正樹先生，川上裕先生，松木篤先生を，富山大学から加賀谷重浩先生を，北陸先端科学技術大学院大学から國滕啲先
生をお招きして，審査•講評をしていただきました。生をお招きして，番査•講評をしてい寺高校の生徒 4 名と小松明峰高校の生徒 4 名が来校して，課題研究の発表をしていただき

課題研究発表テーマ

－【大聖寺高校】 スリープバスター～睡魔をがつ壊す～ （1）結露量の物理的手法を用いた測定と防止法の研究 （2）可撚性気体の撚恶による爆発力の研究
（3）数当てゲームの論理的最適解の考察
（4）ベナール対流の発生条件と流動速度の関係
（5）日本の絵に隠れた比率
ユズの抗酸化作用の有無についての研究
（7）行列を用いた文子認識
（8）ユーグレナの金属イオンによる運動抑制 （9）天然素材を使った接着剤の研究
（11）雪の結晶をつくる核の研究

[^7]

SOL

8 月 21 日（金）に， 1 年理数科の理数地学選択者 6 名と理数生物選択
者からの希望者 9 名で地学野外実習を行いました。今年度は熱中症対策に

ます。 まず，能美市和気町の加賀産業道路沿いにある約 2000 万年～ 1700 万年
前の新生代の火山活動からできた火山岩である巨大流紋岩の観察を行い ました。その後，金沢市大桑町犀川上流貝殻橋付近の河川敷へ移動して，大桑層中部貝化石密集層と大桑層下部貝化石密集層での化石採取を行い，大桑層と犀川層の境界付近で地層観察を行いました。
当日はとても暑い日でしたが，参加した生徒たちは熱心に実習に取り組 んでいました －

10月25日（日），化学グランプリ2020の一次選考が行われ，本校からは理数科の 3 年生 4 名， 2 年生 1 名が挑戦しました。今年 は，選考を通過して全国大会（11月22日（日）に WEBで実施）に進 み，見事，銀資を受質しました。おめでとうこさいます！！
11 月 1 日（日），日本生物学オ
リンピック 2020 代替試験の一次試
験が行われ，本校からは理数科の
3 年生 2 名が挑戦しました。今年
はコロナウイルス感染拡大によ
り，オンラインで実施されました。

が，今回の報告会で大子の字の先生力から励ましをいただいたことで，課題研究への
モチベーションがさらに上がったようでした。
9 月 16 日（水）に，こまつ研究サポートプログ
ム「課題研究中間報告会」の第 2 回目が行われま した。この報告会には，金沢大学から佐藤政行先生，小松﨑俊彦先生，川上裕先生，松木篤先生，金沢工業大学から草野英二先生，石川県立大学から中谷内性及び計画について助言をいたたきました。生会で生徒たちは 7 月に行われた第 1 回目の報告会で
の助言を参考にして夏の間研究を進めてきました
が 今回の報告全で大学の先生方からの熱ふなアド

平成28年度指定
スーパーサイエンスハイスクール

研究開発実施報告書•第5年次
令和3年3月発行

石川県立小松高等学校

〒923－8646 石川県小松市丸内町ニノ丸 15
TEL 0761－22－3250 FAX 0761－22－3251 http：／／cms1．ishikawa－c．ed．jp／komafh／

[^0]: 目 的
 －野外にて試料の採集•観察を行うことにより，科学的探究力を高める。 －グループで実験•実習を行うことにより，協調性等の人間力を育成する。

[^1]: 棵闍
 （4）課題
 1．反射•屈折の法則が成り立っていることを確かめなさい．
 2．䒠験結果からアクリルの屈折摔 n を求めない

[^2]: （a）光が点 A から点 B に進むときの所要時間 t を数式で表せ．
 （b）最短時間の経路からずかにずれても実質的に時間の変化はないことを利用して，屈折の法則を導け．

[^3]: なるものが多い」という記述を読み，「 $1000^{\circ} \mathrm{C}$ の上昇によって速度が \square 倍になる のか？限界があるのではないか」と考えた。理論的に速度定数の最大値はいくらになるか，考えよ。

[^4]:
 月10日（火）に東北大学工学部電気情報物理工学科准教授の鳥谷部祥一先生が来校され，理数科と普通科理系の 3 年対象に，「熱摇らぎの物理学と生体ナノマン特別講義をしていただきました。今回の講義では， での特物理学を使って解明し，また，生命現象をヒントに物理学を発展させる生物物理学の研究についての話を。体分子モーターについて，ノーベル化学賞を受賞した合成酵素の構造解明の研究についての說明をしていただ

[^5]: 国のS S H 指定校が参加して課題研究などのステージ発表
 でポスター発表を行いました。また， 8 日（水）には 1 年
 32 名と 2 年生 2 名が参加し，自分たちの課題研究の参考

 8月8日（水）~ 9 日（木）に神戸国際展示場に

[^6]: 指定校 2 校を含めた 5 校のすべての課題研究のポスター発表が行われまし

[^7]: 10月17日（土）に，いしかわ総合スポーツセンターで「いしかわ高校科学グランプリ」が行われました。今年度は新型コロナウイルス感染防止対策の ため出場チーム数を限定して行われ，本校からは理数科の 2 年生 3 チーム，1 グランプリは午前に数学，物理，化学，生物，地学，情報の筆記競技，午後
 に実技競技（総合系）が行われました。結果は残念ながら「科学の甲子園」の石川県代表にはなれませんでした。また来年に期待したいです。

